3-D Pic Simulation of the Self-Compression of a Sub-TW Laser Pulse in a Dense Gas Target*

Author(s):  
Dang Khoa Tran ◽  
Ming-Wei Lin ◽  
Yao-Li Liu ◽  
Shao-Wei Chou ◽  
Shih-Hung Chen
1997 ◽  
Vol 27 (4) ◽  
pp. 334-335 ◽  
Author(s):  
A Bartnik ◽  
V M Dyakin ◽  
J Kostecki ◽  
I Yu Skobelev ◽  
A Ya Faenov ◽  
...  

2019 ◽  
pp. 39-42
Author(s):  
V.I. Maslov ◽  
D.S. Bondar ◽  
V. Grigorencko ◽  
I.P. Levchuk ◽  
I.N. Onishchenko

At the laser acceleration of self-injected electron bunch by plasma wakefield it is important to form bunch with small energy spread and small size. It has been shown that laser-pulse shaping on radius, intensity and shape controls characteristics of the self-injected electron bunch and provides at certain shaping small energy spread and small size of self-injected and accelerated electron bunch.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050044
Author(s):  
Mehdi Abedi-Varaki

In this paper, self-focusing of intense laser pulse propagating along the obliquely external magnetic field on the collisional magnetoactive plasma by using the perturbation theory have been studied. The wave equation describing the interaction of intense laser pulse with collisional magnetoactive plasma is derived. In addition, employing source-dependent expansion (SDE) method, the analysis of the laser spot-size is discussed. It is shown that with increasing of the angle in obliquely external magnetic field, the spot-size of laser pulse decreases and as a result laser pulse becomes more focused. Furthermore, it is concluded that the self-focusing quality of the laser pulse has been enhanced due to the presence of obliquely external magnetic field in the collisional magnetoactive plasma. Besides, it is seen that with increasing of [Formula: see text], the laser spot-size reduces and subsequently the self-focusing of the laser pulse in plasma enhances. Moreover, it is found that changing the collision effect in the magnetoactive plasma leads to increases of self-focusing properties.


1999 ◽  
Vol 08 (01) ◽  
pp. 121-146 ◽  
Author(s):  
S. L. CHIN ◽  
A. BRODEUR ◽  
S. PETIT ◽  
O. G. KOSAREVA ◽  
V. P. KANDIDOV

The fundamental physical mechanism responsible for the self-focussing, filamentation, supercontinuum generation and conical emission of a powerful ultrashort laser pulse in a transparent optical medium is reviewed. The propagation can be described by the model of moving focus modified by the defocussing effect of the self-induced plasma through multiphoton interaction with the medium. Spatial and temporal self-phase modulation in both the neutral Kerr medium and the plasma transform the pulse into a chirped (elongated) and strongly deformed pulse both temporally and spatially. The manifestation of the deformation is supercontinuum generation and conical emission. A new phenomenon of refocussing was observed. It is due to the diffraction of the trailing part of the pulse by the plasma that results in a ring structure of positive index changes surrounding the plasma column. This ring structure refocuses the pulse partially. The measured coherence lengths of the various frequencies components of the supercontinuum are independent of the optical media used and are essentially equal to that of the pump laser pulse when compared to an incoherent white light source. We thus justify that such a deformed pulse with a very broad spectrum could be called a chirped white light laser pulse.


2014 ◽  
Vol 32 (4) ◽  
pp. 605-611 ◽  
Author(s):  
V. Yu. Bychenkov ◽  
A. V. Brantov ◽  
G. Mourou

AbstractThe interaction of a relativistic short laser pulse with thin foil is studied using 3D PIC simulations in the context of optimized high-energy proton generation for nuclear medicine and pharmacy. As an example, we analyze the Tc-99m yield from the Mo-100(p,2n)Tc-99m reaction with the International Coherent Amplification Network (ICAN) concept defined by a 10 J pulse energy and 10 kHz repetition rate. Based on 3D PIC simulation it has been demonstrated that normally incident 100 fs laser pulse with maximum intensity of 5 × 1021 W/cm2 is able to generate 1011 protons with energy upto 45 MeV from thin semi-transparent CH2 target. Such laser-produced proton beam after 6 hours bombardment of the thick metallic Mo-100 target gives around 300 Gbq activities of Tc-99m isotope. This gives reason to believe that laser technology for producing technetium is possible with ICAN concept to replace the traditional scheme through the fission of weapons-grade uranium.


2012 ◽  
Vol 78 (4) ◽  
pp. 483-489 ◽  
Author(s):  
XIAOFANG WANG ◽  
GUANGHUI WANG ◽  
ZHANNAN MA ◽  
KEGONG DONG ◽  
BIN ZHU ◽  
...  

AbstractFor high-energy gain of electron acceleration by a laser wakefield, a stable or guiding propagation of an ultrashort, high-intensity laser pulse in a gas-target plasma is of fundamental importance. Preliminary experiments were carried out for the propagation of 30-fs, ~100-TW laser pulses of intensities ~1019W/cm2 in plasma of densities ~1019/cm3. Self-guiding length of nearly 1.4 mm was observed in a gas jet and 15 mm in a hydrogen-filled capillary. Fluid-dynamics simulations are used to characterize the two types of gas targets. Particle-in-cell simulations indicate that in the plasma, after the pulse's evolution of self-focusing and over-focusing, the high-intensity pulse could be stably guided with a beam radius close to the plasma wavelength. At lower plasma densities, a preformed plasma channel of a parabolic density profile matched to the laser spot size would be efficient for guiding the pulse.


2009 ◽  
Vol 27 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Sukhdeep Kaur ◽  
A.K. Sharma

AbstractPropagation of an intense laser pulse in plasma with a periodically modulated density is considered using envelope equations. The laser induces modifications of the plasma refractive indexviarelativistic and ponderomotive nonlinearities. In the region of high plasma density, the self focusing effect of nonlinearity suppresses the diffraction divergence, and the laser converges. As the beam enters into the low density region, the diffraction tends to diverge it offsetting the convergence due to the curvature it has acquired. For a given set of plasma parameters, there is a critical power of the laser above which it propagates in a periodically focused manner. Below this power the laser undergoes overall divergence. At substantially higher powers, the laser beam continues to converge until the saturation effect of nonlinearity suppresses the self focusing and diffraction predominates. The effect of density ripple is to cause overall increase in the self focusing length. The minimum spot size decreases with the wave number of the ripple.


Sign in / Sign up

Export Citation Format

Share Document