Optimal Location and Sizing of Multiple DGs to Improve Resiliency of Power System after an HILF event

Author(s):  
Harsh Pachauri ◽  
Ankit Uniyal ◽  
Saumendra Sarangi
Author(s):  
Zuhaila Mat Yasin ◽  
Izni Nadhirah Sam’ón ◽  
Norziana Aminudin ◽  
Nur Ashida Salim ◽  
Hasmaini Mohamad

<p>Monitoring fault current is very important in power system protection. Therefore, the impact of installing Distributed Generation (DG) on the fault current is investigated in this paper. Three types of fault currents which are single line-to-ground, double line-to-ground and three phase fault are analyzed at various fault locations. The optimal location of DG was identified heuristically using power system simulation program for planning, design and analysis of distribution system (PSS/Adept). The simulation was conducted by observing the power losses of the test system by installing DG at each load buses. Bus with minimum power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.</p>


Author(s):  
Shraddha Udgir ◽  
Sarika Varshney ◽  
Laxmi Srivastava

In emerging electric power systems, increased transactions often lead to the situations where the system no longer remains in secure operating region. The flexible AC transmission system (FACTS) controllers can play a vital role in the power system security enhancement. However, due to high capital investment, it is necessary to place these controllers optimally in a power system. FACTS devices can regulate the active and reactive power control as well as adaptive to voltage-magnitude control simultaneously because of their flexibility and fast control characteristics. Placement of these devices at optimal location can lead to control in line flow and maintain bus voltages in desired level and so improve voltage profile and stability margins. This paper proposes a systematic method for finding optimal location of SVC to improve voltage profile of a power system. A contingency analysis to determine the critical outages with respect to voltage security is also examined in order to evaluate the effect of SVC on the location analysis. Effectiveness of the proposed method is demonstrated on IEEE 30-bus test system.


Sign in / Sign up

Export Citation Format

Share Document