scholarly journals Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System

Author(s):  
Shraddha Udgir ◽  
Sarika Varshney ◽  
Laxmi Srivastava

In emerging electric power systems, increased transactions often lead to the situations where the system no longer remains in secure operating region. The flexible AC transmission system (FACTS) controllers can play a vital role in the power system security enhancement. However, due to high capital investment, it is necessary to place these controllers optimally in a power system. FACTS devices can regulate the active and reactive power control as well as adaptive to voltage-magnitude control simultaneously because of their flexibility and fast control characteristics. Placement of these devices at optimal location can lead to control in line flow and maintain bus voltages in desired level and so improve voltage profile and stability margins. This paper proposes a systematic method for finding optimal location of SVC to improve voltage profile of a power system. A contingency analysis to determine the critical outages with respect to voltage security is also examined in order to evaluate the effect of SVC on the location analysis. Effectiveness of the proposed method is demonstrated on IEEE 30-bus test system.

Author(s):  
Mahmood Khalid Zarkani ◽  
Ahmed Sahib Tukkee ◽  
Mohammed Jasim Alali

<p>The rapid and enormous growths of the power electronics industries have made the flexible AC transmission system (FACTS) devices efficient and viable for utility application to increase power system operation controllability as well as flexibility. This research work presents the application of an evolutionary algorithm namely differential evolution (DE) approach to optimize the location and size of three main types of FACTS devices in order to minimize the power system losses as well as improving the network voltage profile. The utilized system has been reactively loaded beginning from the base to 150% and the system performance is analyzed with and without FACTS devices in order to confirm its importance within the power system. Thyristor controlled series capacitor (TCSC), unified power flow controller (UPFC) and static var compensator (SVC) are used in this research work to monitor the active and reactive power of the carried out system. The adopted algorithm has been examined on IEEE 30-bus test system. The obtained research findings are given with appropriate discussion and considered as quite encouraging that will be valuable in electrical grid restructuring.</p>


The secure operation of power system has become a topmost issue in today's largely complicated interconnected power systems. This chapter presents the implementation of grey wolf optimization (GWO), teaching-learning-based optimization (TLBO), biogeography-based optimization (BBO), krill herd algorithm (KHA), chemical reaction optimization (CRO), and hybrid CRO (HCRO) approaches to find the optimal location of various FACTS devices such as thyristor control series compensator (TCSC), thyristor control phase shifter (TCPS), and static VAR compensator (SVC) to solve optimal power flow (OPF) and optimal reactive power dispatch (ORPD) in power system. In this chapter, a standard IEEE 30-bus test system with multiple TCSC and TCPS and SVC devices are used for different single and multi-objective functions to validate the performance of the proposed methods. The simulation results validate the ability of the HCRO to produce better optimal solutions compared to GWO, TLBO, BBO, KHA, and CRO algorithms.


2012 ◽  
Vol 61 (2) ◽  
pp. 239-250 ◽  
Author(s):  
M. Kumar ◽  
P. Renuga

Application of UPFC for enhancement of voltage profile and minimization of losses using Fast Voltage Stability Index (FVSI)Transmission line loss minimization in a power system is an important research issue and it can be achieved by means of reactive power compensation. The unscheduled increment of load in a power system has driven the system to experience stressed conditions. This phenomenon has also led to voltage profile depreciation below the acceptable secure limit. The significance and use of Flexible AC Transmission System (FACTS) devices and capacitor placement is in order to alleviate the voltage profile decay problem. The optimal value of compensating devices requires proper optimization technique, able to search the optimal solution with less computational burden. This paper presents a technique to provide simultaneous or individual controls of basic system parameter like transmission voltage, impedance and phase angle, thereby controlling the transmitted power using Unified Power Flow Controller (UPFC) based on Bacterial Foraging (BF) algorithm. Voltage stability level of the system is defined on the Fast Voltage Stability Index (FVSI) of the lines. The IEEE 14-bus system is used as the test system to demonstrate the applicability and efficiency of the proposed system. The test result showed that the location of UPFC improves the voltage profile and also minimize the real power loss.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sandeep Gupta ◽  
Ramesh Kumar Tripathi

A current source converter (CSC) based static synchronous compensator (STATCOM) is a shunt flexible AC transmission system (FACTS) device, which has a vital role as a stability support for small and large transient instability in an interconnected power network. This paper investigates the impact of a novel and robust pole-shifting controller for CSC-STATCOM to improve the transient stability of the multimachine power system. The proposed algorithm utilizes CSC based STATCOM to supply reactive power to the test system to maintain the transient stability in the event of severe contingency. Firstly, modeling and pole-shifting controller design for CSC based STATCOM are stated. After that, we show the impact of the proposed method in the multimachine power system with different disturbances. Here, applicability of the proposed scheme is demonstrated through simulation in MATLAB and the simulation results show an improvement in the transient stability of multimachine power system with CSC-STATCOM. Also clearly shown, the robustness and effectiveness of CSC-STATCOM are better rather than other shunt FACTS devices (SVC and VSC-STATCOM) by comparing the results in this paper.


Author(s):  
Hanuman P. Agrawal ◽  
Hariom Bansal

Background: The power industry has been evolving continuously and influenced by a competitive deregulated market. The crucial demand to maximize the efficiency of the existing equipment requires it’s proper management. Flexible AC Transmission System (FACTS) are flexible devices, which provide dynamic control over the power system to cope with its dynamic nature. Methods: An extensive review is carried out on FACT devices covering its classification, importance, optimal placement and influence on the power systems. Results: In this paper, different techniques to identify the optimal location of placing FACT devices have been discussed and compared, as the placement of these devices in the power system is of utmost importance for its efficiency. Conclusion: This paper summarizes techniques available for optimal placement of FACTS devices in order to improve power system performance. It will serve as a ready reference for the future researchers in this field and help them in selecting the proper devices to carry out their work.


Author(s):  
Sai Ram Inkollu ◽  
Venkata Reddy Kota

<p>Improvement of power system performance in terms of increased voltage profile and decreased transmission loss is becoming one of the challenging tasks to the system operators under open access environment. Apart from traditional power flow controlling devices, use of Flexible AC Transmission System (FACTS) devices can give an attractive solution for the operation and control of deregulated power system. The type, size, location and number of FACTS devices are to be optimized appropriately in order to get the targeted benefits. In this paper, two FACTS devices, Thyristor Controller Phase Shift Transformer (TCPST) and Interline Power Flow Controller (IPFC) are selected to obtain the required performance such as improvement of voltage profile and loss minimization. To search the optimal location and optimal rating of the selected FACTS devices, a hybrid algorithm which formulated with Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) is proposed. At the first step, the optimization problem is solved for finding the optimal location of FACTS devices using PSO with an objective of voltage profile maximization and later GSA is implemented to optimize their parameters with an objective of transmission loss minimization. The proposed method is implemented on IEEE 30-bus test system and from the simulation results it can be proved that this technique is well suited for real-time application.  </p><p align="center"><strong><br /></strong></p>


2013 ◽  
Vol 62 (1) ◽  
pp. 91-110 ◽  
Author(s):  
S. Sreejith ◽  
Sishaj Psimon ◽  
M.P. Selvan

Abstract This paper proposes a methodology based on installation cost for locating the optimal position of interline power flow controller (IPFC) in a power system network. Here both conventional and non conventional optimization tools such as LR and ABC are applied. This methodology is formulated mathematically based on installation cost of the FACTS device and active power generation cost. The capability of IPFC to control the real and reactive power simultaneously in multiple transmission lines is exploited here. Apart from locating the optimal position of IPFC, this algorithm is used to find the optimal dispatch of the generating units and the optimal value of IPFC parameters. IPFC is modeled using Power Injection (PI) model and incorporated into the problem formulation. This proposed method is compared with that of conventional LR method by validating on standard test systems like 5-bus, IEEE 30-bus and IEEE 118-bus systems. A detailed discussion on power flow and voltage profile improvement is carried out which reveals that incorporating IPFC into power system network in its optimal location significantly enhance the load margin as well as the reliability of the system.


2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Hassan Shokouhandeh ◽  
Sohaib Latif ◽  
Sadaf Irshad ◽  
Mehrdad Ahmadi Kamarposhti ◽  
Ilhami Colak ◽  
...  

Reactive power compensation is one of the practical tools that can be used to improve power systems and reduce costs. These benefits are achieved when the compensators are installed in a suitable place with optimal capacity. This study solves the issues of optimal supply and the purchase of reactive power in the IEEE 30-bus power system, especially when considering voltage stability and reducing total generation and operational costs, including generation costs, reserves, and the installation of reactive power control devices. The modified version of the artificial bee colony (MABC) algorithm is proposed to solve optimization problems and its results are compared with the artificial bee colony (ABC) algorithm, the particle swarm optimization (PSO) algorithm and the genetic algorithm (GA). The simulation results showed that the minimum losses in the power system requires further costs for reactive power compensation. Also, optimization results proved that the proposed MABC algorithm has a lower active power loss, reactive power costs, a better voltage profile and greater stability than the other three algorithms.


Author(s):  
Manish Shrivastava ◽  
Vinay Prakash ◽  
Vishal Kaushik ◽  
Vivek Kumar Upadhyay

With increase in power demand over the last few decades, there has been a great expansion in power generation & transmission. But due to various disturbances, improper loading and environmental conditions the power systems are working near their stability limits which have become a power-transfer limiting factor. This in turn poses a threat to the stability of the system. Transient stability has been considered as one of the most important stability for a power system. In this paper Static VAR Compensator (SVC) has been discussed for reactive power control and hence improvement of transient stability and voltage profile. This paper incorporates IEEE-9 BUS test system with SVC controller using MATLAB Simulation.


2014 ◽  
Vol 984-985 ◽  
pp. 1286-1294
Author(s):  
R. Arun Prasath ◽  
M. Vimalraj ◽  
M. Riyas Ahamed ◽  
K. Srinivasa Rao

This paper presents a graphical user interface (GUI) uses Particle Swarm Optimization (PSO), which is used to find the optimal locations and sizing parameters of multi type Flexible AC transmission systems (FACTS) devices in complex power systems. The GUI toolbox, offers user to choose a power system network, PSO settings and the type and number of FACTS devices for the selected network. In this paper, three different FACTS devices are implemented: SVC, TCSC and TCPST. FACTS devices are used to increase the system loadability, by reducing power flow on overloaded lines, transmission line losses, improving system stability and security. With this can make the transmission system more energy-efficient. PSO used here for optimally allocating and sizing the multiple type FACTS in a standardized power network (IEEE 30 bus system) in order to improve voltage profile, minimizing power system total losses and maximizing system loadability with respect to the size of FACTS.


Sign in / Sign up

Export Citation Format

Share Document