Failure Probability Model of Distribution Network Equipment Based on Improved Age-Reduction Model and Factor Correction

Author(s):  
Zifa Liu ◽  
Ting Zhang
Author(s):  
Mohammad Amin Hariri-Ardebili

Risk analysis of concrete dams and quantification of the failure probability are important tasks in dam safety assessment. The conditional probability of demand and capacity is usually estimated by numerical simulation and Monte Carlo technique. However, the estimated failure probability (or the reliability index) is dam-dependent which makes its application limited to some case studies. This article proposes an analytical failure model for generic gravity dam classes which is optimized based on large number of nonlinear finite element analyses. A hybrid parametric–probabilistic–statistical approach is used to estimate the failure probability as a function of dam size, material distributional models and external hydrological hazard. The proposed model can be used for preliminary design and evaluation of two-dimensional gravity dam models.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 23948-23959 ◽  
Author(s):  
Linhao Ye ◽  
Zhuangli Hu ◽  
Canbing Li ◽  
Yongjun Zhang ◽  
Shiyao Jiang ◽  
...  

2013 ◽  
Vol 336-338 ◽  
pp. 471-474
Author(s):  
Shi Guang ◽  
Hai Jing Yang ◽  
Qi Wei Wang ◽  
Yan Jin

In allusion to the issues of system line state transfer that may arise in adverse weather, a new method of probability calculation is proposed. In a statistical analysis, this article firstly defines that failure probability of the first line subjects to Poisson distribution. Secondly, we figure out the power flow transferring distribution after first line fault, according to the method of Flow Transferring Relativity Factor (FTRF), and combine with the protective possibility so as to build the probability model between the load rate and protection action. Then, the method defines the severity of line load rate. Finally, the approach constructs the line state transition probability model considering direct and indirect factors in adverse weather. The effectiveness and correctness of the proposed method are verified by simulation based on IEEE 39-node system.


Sign in / Sign up

Export Citation Format

Share Document