backup path
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ningning Guo ◽  
Longfei Li ◽  
Biswanath Mukherjee ◽  
Gangxiang Shen

Machine learning (ML)-based methods are widely explored to predict the quality of transmission (QoT) of a lightpath, which is expected to reduce optical signal to noise ratio (OSNR) margin reserved for the lightpath and therefore improve the spectrum efficiency of an optical network. However, many studies conducting this prediction are often based on synthetic datasets or datasets obtained from laboratory. As such, these datasets may not be amply representative to cover the entire status space of a real optical network, which is often exposed in harsh environment. There are risks of failure when using these ML-based QoT prediction models. It is necessary to develop a mechanism that can guarantee the reliability of a lightpath service even if the prediction models fail. For this, we propose to take advantage of the conventional network protection techniques that are popularly implemented in an optical network and reuse their protection resources to also protect against such a type of failure. Based on the two representative protection techniques, i.e., 1+1 dedicated path protection and shared backup path protection (SBPP), the performance of the proposed protection mechanism is evaluated by reserving different margins for the working and protection lightpaths. For 1+1 path protection, we find that the proposed mechanism can achieve a zero design-margin (D-margin) for a working lightpath thereby significantly improving network spectrum efficiency, while not scarifying the availability of lightpath services. For SBPP, we find that an optimal D-margin should be identified to balance the spectrum efficiency and service availability, and although not significant, the proposed mechanism can save an up to 0.5-dB D-margin for a working lightpath, while guaranteeing the service availability.


2021 ◽  
Author(s):  
Ningning Guo ◽  
Longfei Li ◽  
Biswanath Mukherjee ◽  
Gangxiang Shen

Machine learning (ML)-based methods are widely explored to predict the quality of transmission (QoT) of a lightpath, which is expected to reduce optical signal to noise ratio (OSNR) margin reserved for the lightpath and therefore improve the spectrum efficiency of an optical network. However, many studies conducting this prediction are often based on synthetic datasets or datasets obtained from laboratory. As such, these datasets may not be amply representative to cover the entire status space of a real optical network, which is often exposed in harsh environment. There are risks of failure when using these ML-based QoT prediction models. It is necessary to develop a mechanism that can guarantee the reliability of a lightpath service even if the prediction models fail. For this, we propose to take advantage of the conventional network protection techniques that are popularly implemented in an optical network and reuse their protection resources to also protect against such a type of failure. Based on the two representative protection techniques, i.e., 1+1 dedicated path protection and shared backup path protection (SBPP), the performance of the proposed protection mechanism is evaluated by reserving different margins for the working and protection lightpaths. For 1+1 path protection, we find that the proposed mechanism can achieve a zero design-margin (D-margin) for a working lightpath thereby significantly improving network spectrum efficiency, while not scarifying the availability of lightpath services. For SBPP, we find that an optimal D-margin should be identified to balance the spectrum efficiency and service availability, and although not significant, the proposed mechanism can save an up to 0.5-dB D-margin for a working lightpath, while guaranteeing the service availability.


2021 ◽  
Vol 1 (4) ◽  
pp. 233-243
Author(s):  
Alhimni Alhimni ◽  
Ilman Zuhri Yadi

This research is based on the observations and experiences of researchers, that now the internet has become a basic need for an agency, almost all Directorates of Water Resources (SDA) have a computer network. The Directorate of Water Resources (SDA) Central Sumatra River Basin VIII has implemented a network to support the performance of the Directorate of Water Resources (SDA), but still has problems where the network often experiences disconnections due to damage, interference with switches, damage to cables and network connectors. and Hang routers. To meet the internet needs at the Directorate of Water Resources (SDA) Central Sumatra VIII River Basin, stable internet is needed, therefore a failover method is needed. The problem in this research is that there are frequent disturbances in the internet network. The transfer of the main internet line to the backup path is done manually. Given how important the network is to support performance at the Directorate of Water Resources (SDA), the authors suggest to create a failover backup system for Mikrotik routers in the Directorate of Water Resources (SDA). This research uses the Action Research development method, which consists of Diagnostic, Action planning, action taking, evaluating and e-learning. With this application, it is hoped that if there is a problem with the router device, it will not interfere with the use of the existing network. On the internet network of the Directorate of Water Resources (SDA) Central Sumatra River Region VIII.


2021 ◽  
Author(s):  
◽  
Deb Shepherd

<p>An ISP style network often has a particular traffic pattern not typically seen in other networks and which is a direct result of the ISP’s purpose, to connect internal clients with a high speed external link. Such a network is likely to consist of a backbone with the clients on one ‘side’ and one or more external links on the other. Most traffic on the network moves between an internal client and the external world via the backbone. But what about traffic between two clients of the ISP? Typical routing protocols will find the ‘best’ path between the two gateway routers at the edge of the client stub networks. As these routers connect the stubs to the ISP core, this route should be entirely within the ISP network. Ideally, from the ISP point of view, this traffic will go up to the backbone and down again but it is possible that it may find another route along a redundant backup path. Don Stokes of Knossos Networks has developed a protocol to sit on the client fringes of this ISP style of network. It is based on the distance vector algorithm and is intended to be subordinate to the existing interior gateway protocol running on the ISPs backbone. It manipulates the route cost calculation so that paths towards the backbone become very cheap and paths away from the backbone become expensive. This forces traffic in the preferred direction unless the backup path ‘shortcut’ is very attractive or the backbone link has disappeared. It is the analysis and development of the fringe routing protocol that forms the content of this ME thesis.</p>


2021 ◽  
Author(s):  
◽  
Deb Shepherd

<p>An ISP style network often has a particular traffic pattern not typically seen in other networks and which is a direct result of the ISP’s purpose, to connect internal clients with a high speed external link. Such a network is likely to consist of a backbone with the clients on one ‘side’ and one or more external links on the other. Most traffic on the network moves between an internal client and the external world via the backbone. But what about traffic between two clients of the ISP? Typical routing protocols will find the ‘best’ path between the two gateway routers at the edge of the client stub networks. As these routers connect the stubs to the ISP core, this route should be entirely within the ISP network. Ideally, from the ISP point of view, this traffic will go up to the backbone and down again but it is possible that it may find another route along a redundant backup path. Don Stokes of Knossos Networks has developed a protocol to sit on the client fringes of this ISP style of network. It is based on the distance vector algorithm and is intended to be subordinate to the existing interior gateway protocol running on the ISPs backbone. It manipulates the route cost calculation so that paths towards the backbone become very cheap and paths away from the backbone become expensive. This forces traffic in the preferred direction unless the backup path ‘shortcut’ is very attractive or the backbone link has disappeared. It is the analysis and development of the fringe routing protocol that forms the content of this ME thesis.</p>


Top ◽  
2021 ◽  
Author(s):  
Marta Pascoal ◽  
José Craveirinha ◽  
João Clímaco

AbstractThe paper addresses the lexicographically maximal risk-disjoint/minimal cost path pair problem that aims at finding a pair of paths between two given nodes, which is the shortest (in terms of cost) among those that have the fewest risks in common. This problem is of particular importance in telecommunication network design, namely concerning resilient routing models where both a primary and a backup path have to be calculated to minimize the risk of failure of a connection between origin and terminal nodes, in case of failure along the primary path and where bandwidth routing costs should also be minimized. An exact combinatorial algorithm is proposed for solving this problem which combines a path ranking method and a path labelling algorithm. Also an integer linear programming (ILP) formulation is shown for comparison purposes. After a theoretical justification of the algorithm foundations, this is described and tested, together with the ILP procedure, for a set of reference networks in telecommunications, considering randomly generated risks, associated with Shared Risk Link Groups (SRLGs) and arc costs. Both methods were capable of solving the problem instances in relatively short times and, in general, the proposed algorithm was clearly faster than the ILP formulation excepting for the networks with the greatest dimension and connectivity.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Meaad Fadhel ◽  
Lei Huang ◽  
Huaxi Gu

High-speed data transmission enabled by photonic network-on-chip (PNoC) has been regarded as a significant technology to overcome the power and bandwidth constraints of electrical network-on-Chip (ENoC). This has given rise to an exciting new research area, which has piqued the public’s attention. Current on-chip architectures cannot guarantee the reliability of PNoC, due to component failures or breakdowns occurring, mainly, in active components such as optical routers (ORs). When such faults manifest, the optical router will not function properly, and the whole network will ultimately collapse. Moreover, essential phenomena such as insertion loss, crosstalk noise, and optical signal-to-noise ratio (OSNR) must be considered to provide fault-tolerant PNoC architectures with low-power consumption. The main purpose of this manuscript is to improve the reliability of PNoCs without exposing the network to further blocking or contention by taking the effect of backup paths on signals sent over the default paths into consideration. Thus, we propose a universal method that can be applied to any optical router in order to increase the reliability by using a reliable ring waveguide (RRW) to provide backup paths for each transmitted signal within the same router, without the need to change the route of the signal within the network. Moreover, we proposed a simultaneous transmission probability analysis for optical routers to show the feasibility of this proposed method. This probability analyzes all the possible signals that can be transmitted at the same time within the default and the backup paths of the router. Our research work shows that the simultaneous transmission probability is improved by 10% to 46% compared to other fault-tolerant optical routers. Furthermore, the worst-case insertion loss of our scheme can be reduced by 46.34% compared to others. The worst-case crosstalk noise is also reduced by 24.55%, at least, for the default path and 15.7%, at least, for the backup path. Finally, in the network level, the OSNR is increased by an average of 68.5% for the default path and an average of 15.9% for the backup path, for different sizes of the network.


2021 ◽  
Author(s):  
Wei Xu ◽  
Xin Li ◽  
Shanguo Huang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document