Three-dimensional behavior of arc current near electrodes of MHD generator

Author(s):  
M. Ishikawa ◽  
K. Itoh
2008 ◽  
Vol 44 (4) ◽  
pp. 1116-1123 ◽  
Author(s):  
Triwahju Hardianto ◽  
Nobuomi Sakamoto ◽  
Nobuhiro Harada

1992 ◽  
Vol 114 (1) ◽  
pp. 68-72 ◽  
Author(s):  
E. D. Doss ◽  
G. D. Roy

The flow characteristics inside magnetohydrodynamic (MHD) plasma generators and seawater thrusters are analyzed and are compared using a three-dimensional computer model that solves the governing partial differential equations for fluid flow and electrical fields. Calculations have been performed for a Faraday plasma generator and for a continuous electrode seawater thruster. The results of the calculations show that the effects caused by the interaction of the MHD forces with the fluid flow are strongly manifested in the case of the MHD generator as compared to the flow development in the MHD thruster. The existence of velocity overshoots over the sidewalls confirm previously published results for MHD generators with strong MHD interaction. For MHD thrusters, the velocity profile is found to be slightly flatter over the sidewall as compared to that over the electrode wall. As a result, distinct enhancement of the skin friction exists over the sidewalls of MHD generators in comparison to that of MHD thrusters. Plots of velocity profiles and skin friction distributions are presented to illustrate and compare the flow development in MHD generators and thrusters.


1999 ◽  
Vol 119 (7) ◽  
pp. 828-833
Author(s):  
Kazuya Shimizu ◽  
Hiromichi Kobayashi ◽  
Yoshihiro Okuno ◽  
Shigeharu Kabashima

Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 481 ◽  
Author(s):  
Jaehoo Lee ◽  
Seungjun Lee ◽  
Heung Nam Han ◽  
Woongsik Kim ◽  
Nong-Moon Hwang

The recently discovered yttrium oxyfluoride (YOF) coating has been found to be a highly promising plasma-resistant material which can be coated onto the inner wall of the dry etching chambers used in the manufacturing of the three-dimensional stacking circuits of semiconductors, such as vertical NAND flash memory. Here, the coating behavior of the YOF coating which was deposited by suspension plasma spraying was investigated using a high-output coaxial feeding method. Both the deposition rate and density of YOF coatings increased with the plasma power, which was determined by the gas ratio of Ar/H2/N2 and the arc current. The coating thicknesses were 58 ± 3.4, 25.8 ± 2.1, 5.6 ± 0.6, and 0.93 ± 0.4 µm at plasma powers of 112, 83, 67, and 59 kW, respectively, for 20 scans with a feeding rate of the suspension at 0.045 standard liters per minute (slm). The porosities were 0.15% ± 0.01%, 0.25% ± 0.01%, and 5.50% ± 0.40% at corresponding plasma powers of 112, 83, and 67 kW. High-resolution X-ray diffraction (HRXRD) shows that the major and minor peaks of the coatings which were deposited at 112 kW stem from trigonal YOF and cubic Y2O3, respectively. Increasing the flow rate of the atomizing gas from 15 slm to 30 slm decreased the porosity of the YOF coating from 0.22% ± 0.03% to 0.07% ± 0.03%. The Vickers hardness of the YOF coating containing some Y2O3 deposited at 112 kW was 550 ± 70 HV.


Sign in / Sign up

Export Citation Format

Share Document