nand flash
Recently Published Documents


TOTAL DOCUMENTS

2145
(FIVE YEARS 449)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 27 (1) ◽  
pp. 1-20
Author(s):  
Lanlan Cui ◽  
Fei Wu ◽  
Xiaojian Liu ◽  
Meng Zhang ◽  
Renzhi Xiao ◽  
...  

Low-density parity-check (LDPC) codes have been widely adopted in NAND flash in recent years to enhance data reliability. There are two types of decoding, hard-decision and soft-decision decoding. However, for the two types, their error correction capability degrades due to inaccurate log-likelihood ratio (LLR) . To improve the LLR accuracy of LDPC decoding, this article proposes LLR optimization schemes, which can be utilized for both hard-decision and soft-decision decoding. First, we build a threshold voltage distribution model for 3D floating gate (FG) triple level cell (TLC) NAND flash. Then, by exploiting the model, we introduce a scheme to quantize LLR during hard-decision and soft-decision decoding. And by amplifying a portion of small LLRs, which is essential in the layer min-sum decoder, more precise LLR can be obtained. For hard-decision decoding, the proposed new modes can significantly improve the decoder’s error correction capability compared with traditional solutions. Soft-decision decoding starts when hard-decision decoding fails. For this part, we study the influence of the reference voltage arrangement of LLR calculation and apply the quantization scheme. The simulation shows that the proposed approach can reduce frame error rate (FER) for several orders of magnitude.


2022 ◽  
Vol 21 (1) ◽  
pp. 1-24
Author(s):  
Katherine Missimer ◽  
Manos Athanassoulis ◽  
Richard West

Modern solid-state disks achieve high data transfer rates due to their massive internal parallelism. However, out-of-place updates for flash memory incur garbage collection costs when valid data needs to be copied during space reclamation. The root cause of this extra cost is that solid-state disks are not always able to accurately determine data lifetime and group together data that expires before the space needs to be reclaimed. Real-time systems found in autonomous vehicles, industrial control systems, and assembly-line robots store data from hundreds of sensors and often have predictable data lifetimes. These systems require guaranteed high storage bandwidth for read and write operations by mission-critical real-time tasks. In this article, we depart from the traditional block device interface to guarantee the high throughput needed to process large volumes of data. Using data lifetime information from the application layer, our proposed real-time design, called Telomere , is able to intelligently lay out data in NAND flash memory and eliminate valid page copies during garbage collection. Telomere’s real-time admission control is able to guarantee tasks their required read and write operations within their periods. Under randomly generated tasksets containing 500 tasks, Telomere achieves 30% higher throughput with a 5% storage cost compared to pre-existing techniques.


Author(s):  
Gerardo Malavena

AbstractSince the very first introduction of three-dimensional (3–D) vertical-channel (VC) NAND Flash memory arrays, gate-induced drain leakage (GIDL) current has been suggested as a solution to increase the string channel potential to trigger the erase operation. Thanks to that erase scheme, the memory array can be built directly on the top of a $$n^+$$ n + plate, without requiring any p-doped region to contact the string channel and therefore allowing to simplify the manufacturing process and increase the array integration density. For those reasons, the understanding of the physical phenomena occurring in the string when GIDL is triggered is important for the proper design of the cell structure and of the voltage waveforms adopted during erase. Even though a detailed comprehension of the GIDL phenomenology can be achieved by means of technology computer-aided design (TCAD) simulations, they are usually time and resource consuming, especially when realistic string structures with many word-lines (WLs) are considered. In this chapter, an analysis of the GIDL-assisted erase in 3–D VC nand memory arrays is presented. First, the evolution of the string potential and GIDL current during erase is investigated by means of TCAD simulations; then, a compact model able to reproduce both the string dynamics and the threshold voltage transients with reduced computational effort is presented. The developed compact model is proven to be a valuable tool for the optimization of the array performance during erase assisted by GIDL. Then, the idea of taking advantage of GIDL for the erase operation is exported to the context of spiking neural networks (SNNs) based on NOR Flash memory arrays, which require operational schemes that allow single-cell selectivity during both cell program and cell erase. To overcome the block erase typical of nor Flash memory arrays based on Fowler-Nordheim tunneling, a new erase scheme that triggers GIDL in the NOR Flash cell and exploits hot-hole injection (HHI) at its drain side to accomplish the erase operation is presented. Using that scheme, spike-timing dependent plasticity (STDP) is implemented in a mainstream NOR Flash array and array learning is successfully demonstrated in a prototype SNN. The achieved results represent an important step for the development of large-scale neuromorphic systems based on mature and reliable memory technologies.


Author(s):  
Zhichao Du ◽  
Zhipeng Dong ◽  
Kaikai You ◽  
Xinlei Jia ◽  
Ye Tian ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3156
Author(s):  
Akira Goda

Since 3D NAND was introduced to the industry with 24 layers, the areal density has been successfully increased more than ten times, and has exceeded 10 Gb/mm2 with 176 layers. The physical scaling of XYZ dimensions including layer stacking and footprint scaling enabled the density scaling. Logical scaling has been successfully realized, too. TLC (triple-level cell, 3 bits per cell) is now the mainstream in 3D NAND, while QLC (quad-level cell, 4 bits per cell) is increasing the presence. Several attempts and partial demonstrations were made for PLC (penta-level cell, 5 bits per cell). CMOS under array (CuA) enabled the die size reduction and performance improvements. Program and erase schemes to address the technology challenges such as short-term data retention of the charge-trap cell and the large block size are being investigated.


2021 ◽  
Author(s):  
Liang Zhao ◽  
Chu Yan ◽  
Fan Yang ◽  
Shifan Gao ◽  
Gabriel Rosca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document