Distributed coordinated tracking control for multiple nonholonomic systems with directed communication topology

Author(s):  
Qin Wang ◽  
Zuwen Chen ◽  
Yang Yi
2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Gang Chen ◽  
Qing Lin

This paper investigates the cooperative tracking control problem for networked uncertain Lagrange systems with a leader-follower structure on digraphs. Since the leader’s information is only available to a portion of the followers, finite-time observers are designed to estimate the leader’s velocity. Based on the estimated velocity information and the universal approximation ability of fuzzy logic systems, a distributed adaptive fuzzy tracking control protocol is first proposed for the fault-free Lagrange systems. Then, the actuator faults are considered and a distributed fault-tolerant controller is presented. Based on graph theory and Lyapunov theory, the convergence analyses for the proposed algorithms are provided. The development in this paper is suitable for the general directed communication topology. Numerical simulation results are presented to show the closed-loop performance of the proposed control law and illustrate its robustness to actuator faults and external disturbances.


Sign in / Sign up

Export Citation Format

Share Document