Spherical Formation Tracking Control of Spacecraft Flying Under Directed Communication Topology and External Disturbance

Author(s):  
Rui Yu ◽  
Yang-Yang Chen ◽  
Fa-Xiang Zhang
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
E. G. Hernandez-Martinez ◽  
E. D. Ferreira-Vazquez ◽  
G. Fernandez-Anaya ◽  
J. J. Flores-Godoy

This paper presents two formation tracking control strategies for a combined set of single and double integrator agents with an arbitrary undirected communication topology. The first approach is based on the design of distance-based potential functions with interagent collision avoidance using local information about the distance and orientation between agents and the desired trajectory. The second approach adds signed area constraints to the desired formation specification and a control strategy that uses distance as well as area terms is designed to achieve tracking convergence. Numerical simulations show the performance from both control laws.


Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4374
Author(s):  
Jose Bernardo Martinez ◽  
Hector M. Becerra ◽  
David Gomez-Gutierrez

In this paper, we addressed the problem of controlling the position of a group of unicycle-type robots to follow in formation a time-varying reference avoiding obstacles when needed. We propose a kinematic control scheme that, unlike existing methods, is able to simultaneously solve the both tasks involved in the problem, effectively combining control laws devoted to achieve formation tracking and obstacle avoidance. The main contributions of the paper are twofold: first, the advantages of the proposed approach are not all integrated in existing schemes, ours is fully distributed since the formulation is based on consensus including the leader as part of the formation, scalable for a large number of robots, generic to define a desired formation, and it does not require a global coordinate system or a map of the environment. Second, to the authors’ knowledge, it is the first time that a distributed formation tracking control is combined with obstacle avoidance to solve both tasks simultaneously using a hierarchical scheme, thus guaranteeing continuous robots velocities in spite of activation/deactivation of the obstacle avoidance task, and stability is proven even in the transition of tasks. The effectiveness of the approach is shown through simulations and experiments with real robots.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1416
Author(s):  
Guang-Hui Xu ◽  
Meng Li ◽  
Jie Chen ◽  
Qiang Lai ◽  
Xiao-Wen Zhao

This paper investigates formation tracking control for multi-agent networks with fixed time convergence. The control task is that the follower agents are required to form a prescribed formation within a fixed time and the geometric center of the formation moves in sync with the leader. First, an error system is designed by using the information of adjacent agents and a new control protocol is designed based on the error system and terminal sliding mode control (TSMC). Then, via employing the Lyapunov stability theorem and the fixed time stability theorem, the control task is proved to be possible within a fixed time and the convergence time can be calculated by parameters. Finally, numerical results illustrate the feasibility of the proposed control protocol.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Mihankhah ◽  
Ali Doustmohammadi

Purpose The purpose of this paper, is to solve the problem of finite-time fault-tolerant attitude synchronization and tracking control of multiple rigid bodies in presence of model uncertainty, external disturbances, actuator faults and saturation. It is assumed that the rigid bodies in the formation may encounter loss of effectiveness and/or bias actuator faults. Design/methodology/approach For the purpose, adaptive terminal sliding mode control and neural network structure are used, and a new sliding surface is proposed to guarantee known finite-time convergence not only at the reaching phase but also on the sliding surface. The sliding surface is then modified using a proposed auxiliary system to maintain stability under actuator saturation. Findings Assuming that the communication topology between the rigid bodies is governed by an undirected connected graph and the upper bounds on the actuators’ faults, estimation error of model uncertainty and external disturbance are unknown, not only the attitudes of the rigid bodies in the formation are synchronized but also they track the time-varying attitude of a virtual leader. Using Lyapunov stability approach, finite-time stability of the proposed control algorithms demonstrated on the sliding phase as well as the reaching phase. The effectiveness of the proposed algorithm is also validated by simulation. Originality/value The proposed controller has the advantage that the need for any fault detection and diagnosis mechanism and the upper bounds information on estimation error and external disturbance is eliminated.


2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Sign in / Sign up

Export Citation Format

Share Document