A Spectral Clustering Approach Based on Modularity Maximization for Community Detection Problem

Author(s):  
Chen-Kun Tsung ◽  
Hannjang Ho ◽  
Shengkai Chou ◽  
Janching Lin ◽  
Singling Lee
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susan M. Mniszewski ◽  
Pavel A. Dub ◽  
Sergei Tretiak ◽  
Petr M. Anisimov ◽  
Yu Zhang ◽  
...  

AbstractQuantum chemistry is interested in calculating ground and excited states of molecular systems by solving the electronic Schrödinger equation. The exact numerical solution of this equation, frequently represented as an eigenvalue problem, remains unfeasible for most molecules and requires approximate methods. In this paper we introduce the use of Quantum Community Detection performed using the D-Wave quantum annealer to reduce the molecular Hamiltonian matrix in Slater determinant basis without chemical knowledge. Given a molecule represented by a matrix of Slater determinants, the connectivity between Slater determinants (as off-diagonal elements) is viewed as a graph adjacency matrix for determining multiple communities based on modularity maximization. A gauge metric based on perturbation theory is used to determine the lowest energy cluster. This cluster or sub-matrix of Slater determinants is used to calculate approximate ground state and excited state energies within chemical accuracy. The details of this method are described along with demonstrating its performance across multiple molecules of interest and bond dissociation cases. These examples provide proof-of-principle results for approximate solution of the electronic structure problem using quantum computing. This approach is general and shows potential to reduce the computational complexity of post-Hartree–Fock methods as future advances in quantum hardware become available.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 443
Author(s):  
Inmaculada Gutiérrez ◽  
Juan Antonio Guevara ◽  
Daniel Gómez ◽  
Javier Castro ◽  
Rosa Espínola

In this paper, we address one of the most important topics in the field of Social Networks Analysis: the community detection problem with additional information. That additional information is modeled by a fuzzy measure that represents the risk of polarization. Particularly, we are interested in dealing with the problem of taking into account the polarization of nodes in the community detection problem. Adding this type of information to the community detection problem makes it more realistic, as a community is more likely to be defined if the corresponding elements are willing to maintain a peaceful dialogue. The polarization capacity is modeled by a fuzzy measure based on the JDJpol measure of polarization related to two poles. We also present an efficient algorithm for finding groups whose elements are no polarized. Hereafter, we work in a real case. It is a network obtained from Twitter, concerning the political position against the Spanish government taken by several influential users. We analyze how the partitions obtained change when some additional information related to how polarized that society is, is added to the problem.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-20
Author(s):  
Zhe Chen ◽  
Aixin Sun ◽  
Xiaokui Xiao

Community detection on network data is a fundamental task, and has many applications in industry. Network data in industry can be very large, with incomplete and complex attributes, and more importantly, growing. This calls for a community detection technique that is able to handle both attribute and topological information on large scale networks, and also is incremental. In this article, we propose inc-AGGMMR, an incremental community detection framework that is able to effectively address the challenges that come from scalability, mixed attributes, incomplete values, and evolving of the network. Through construction of augmented graph, we map attributes into the network by introducing attribute centers and belongingness edges. The communities are then detected by modularity maximization. During this process, we adjust the weights of belongingness edges to balance the contribution between attribute and topological information to the detection of communities. The weight adjustment mechanism enables incremental updates of community membership of all vertices. We evaluate inc-AGGMMR on five benchmark datasets against eight strong baselines. We also provide a case study to incrementally detect communities on a PayPal payment network which contains users with transactions. The results demonstrate inc-AGGMMR’s effectiveness and practicability.


2015 ◽  
Vol 57 ◽  
pp. 100-109 ◽  
Author(s):  
Sean Brocklebank ◽  
Scott Pauls ◽  
Daniel Rockmore ◽  
Timothy C. Bates

Sign in / Sign up

Export Citation Format

Share Document