Zhang Matrix Found as an Exception with its Time-Dependent Pseudoinverse Unsolvable by Getz-Masden Dynamic System

Author(s):  
Yunong Zhang ◽  
Guangyuan Shi ◽  
Jian Li ◽  
Guofu Wu ◽  
Zhiyuan Qi
Author(s):  
Loi Tran ◽  
Michael Hennessey ◽  
John Abraham

There are many approaches to simulating and visualizing a dynamic system. Our focus is on developing/understanding and trading-off three different approaches that are relatively easy to implement with inexpensive, commonly available software using combinations of MATLAB, Simulink, Simulink 3D Animation, SolidWorks (basic), SolidWorks (Motion Manager) in addition to several common animation players such as Windows (Live) Movie Maker or the resident animation capability within MATLAB. The “SolidWorks Design Table” approach entails creating MATLAB/Simulink driven time-dependent assembly configurations, associated graphics files (e.g. JPG, TIFF) and then effectively “playing” them sequentially with animation software. The “SolidWorks Motor” approach utilizes SolidWorks’ Motion Manager capability (an add-on), whereby each spatially time-dependent geometric system variable is driven by a “motor” based on MATLAB/Simulink time-dependent data and an animation file can be generated from within Motion Manager. Lastly, in the “Simulink 3D Animation” approach, SolidWorks data is brought into the MATLAB environment and modified with V-Realm Builder (VRML Editor) supplied within the Simulink 3D Animation toolbox to define geometric constraints prior to inclusion as an animation VR Sink block within the Simulink model of the dynamic system. In each case, detailed procedures are provided. To exercise these three different approaches and permit comparisons, a benchmark problem was posed: parallel-parking of a four-wheeled vehicle possessing front wheel steering. Comparisons were then made and the recommended approach depends on such issues as the software background of the developer, the animation quality standard (e.g. framerate), and relative ease of implementation.


2018 ◽  
Vol 760 ◽  
pp. 272-277
Author(s):  
Vladimir Šána ◽  
Jiří Litoš ◽  
Zdeňka Říhová ◽  
Markéta Kočová

The submitted paper is focused on the design of Tuned Mass Damper in order to reduce excessive level of vibration. This device is designed to be active at the first natural frequency of the structure. Subsequently, the efficiency of the new dynamic system (structure-TMD) is verified for several types of time-dependent loads, which express swaying vandal, jumping vandal and moving pedestrian.


Sign in / Sign up

Export Citation Format

Share Document