A 3D individual tree modeling technique based on terrestrial LiDAR point cloud data

Author(s):  
Hongyu Huang ◽  
Liyu Tang ◽  
Chongcheng Chen
Author(s):  
L. Li ◽  
L. Pang ◽  
X. D. Zhang ◽  
H. Liu

Muti-baseLine SAR tomography can be used on 3D reconstruction of urban building based on SAR images acquired. In the near future, it is expected to become an important technical tool for urban multi-dimensional precision monitoring. For the moment,There is no effective method to verify the accuracy of tomographic SAR 3D point cloud of urban buildings. In this paper, a new method based on terrestrial Lidar 3D point cloud data to verify the accuracy of the tomographic SAR 3D point cloud data is proposed, 3D point cloud of two can be segmented into different facadeds. Then facet boundary extraction is carried out one by one, to evaluate the accuracy of tomographic SAR 3D point cloud of urban buildings. The experience select data of Pangu Plaza to analyze and compare, the result of experience show that the proposed method that evaluating the accuracy of tomographic SAR 3D point clou of urban building based on lidar 3D point cloud is validity and applicability


Author(s):  
S. D. Jawak ◽  
S. N. Panditrao ◽  
A. J. Luis

This work uses the canopy height model (CHM) based workflow for individual tree crown delineation and 3D feature extraction approach (Overwatch Geospatial's proprietary algorithm) for building feature delineation from high-density light detection and ranging (LiDAR) point cloud data in an urban environment and evaluates its accuracy by using very high-resolution panchromatic (PAN) (spatial) and 8-band (multispectral) WorldView-2 (WV-2) imagery. LiDAR point cloud data over San Francisco, California, USA, recorded in June 2010, was used to detect tree and building features by classifying point elevation values. The workflow employed includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model (DTM), generation of a hill-shade image and an intensity image, extraction of digital surface model, generation of bare earth digital elevation model (DEM) and extraction of tree and building features. First, the optical WV-2 data and the LiDAR intensity image were co-registered using ground control points (GCPs). The WV-2 rational polynomial coefficients model (RPC) was executed in ERDAS Leica Photogrammetry Suite (LPS) using supplementary *.RPB file. In the second stage, ortho-rectification was carried out using ERDAS LPS by incorporating well-distributed GCPs. The root mean square error (RMSE) for the WV-2 was estimated to be 0.25 m by using more than 10 well-distributed GCPs. In the second stage, we generated the bare earth DEM from LiDAR point cloud data. In most of the cases, bare earth DEM does not represent true ground elevation. Hence, the model was edited to get the most accurate DEM/ DTM possible and normalized the LiDAR point cloud data based on DTM in order to reduce the effect of undulating terrain. We normalized the vegetation point cloud values by subtracting the ground points (DEM) from the LiDAR point cloud. A normalized digital surface model (nDSM) or CHM was calculated from the LiDAR data by subtracting the DEM from the DSM. The CHM or the normalized DSM represents the absolute height of all aboveground urban features relative to the ground. After normalization, the elevation value of a point indicates the height from the ground to the point. The above-ground points were used for tree feature and building footprint extraction. In individual tree extraction, first and last return point clouds were used along with the bare earth and building footprint models discussed above. In this study, scene dependent extraction criteria were employed to improve the 3D feature extraction process. LiDAR-based refining/ filtering techniques used for bare earth layer extraction were crucial for improving the subsequent 3D features (tree and building) feature extraction. The PAN-sharpened WV-2 image (with 0.5 m spatial resolution) was used to assess the accuracy of LiDAR-based 3D feature extraction. Our analysis provided an accuracy of 98 % for tree feature extraction and 96 % for building feature extraction from LiDAR data. This study could extract total of 15143 tree features using CHM method, out of which total of 14841 were visually interpreted on PAN-sharpened WV-2 image data. The extracted tree features included both shadowed (total 13830) and non-shadowed (total 1011). We note that CHM method could overestimate total of 302 tree features, which were not observed on the WV-2 image. One of the potential sources for tree feature overestimation was observed in case of those tree features which were adjacent to buildings. In case of building feature extraction, the algorithm could extract total of 6117 building features which were interpreted on WV-2 image, even capturing buildings under the trees (total 605) and buildings under shadow (total 112). Overestimation of tree and building features was observed to be limiting factor in 3D feature extraction process. This is due to the incorrect filtering of point cloud in these areas. One of the potential sources of overestimation was the man-made structures, including skyscrapers and bridges, which were confounded and extracted as buildings. This can be attributed to low point density at building edges and on flat roofs or occlusions due to which LiDAR cannot give as much precise planimetric accuracy as photogrammetric techniques (in segmentation) and lack of optimum use of textural information as well as contextual information (especially at walls which are away from roof) in automatic extraction algorithm. In addition, there were no separate classes for bridges or the features lying inside the water and multiple water height levels were also not considered. Based on these inferences, we conclude that the LiDAR-based 3D feature extraction supplemented by high resolution satellite data is a potential application which can be used for understanding and characterization of urban setup.


Author(s):  
D. Y. Shin ◽  
J. S. Sim ◽  
K. S. Lee

<p><strong>Abstract.</strong> A collapse of slope is one of the natural disasters that often occur during the early spring and the rainy season. In order to prevent this kind of disaster, safety monitoring is carried out through risk assessment. This assessment consists of various parameters such as inclination angle and height of the slope, and inspectors evaluate the score using the compass, the laser range finder, and so on. This approach is, however, consumed a lot of the manpower and the time. This study, therefore, aims to evaluate the rapid and accurate steep slope risk by using a terrestrial LiDAR which takes 3 dimensional spatial information data. 3D spatial information data was acquired using the terrestrial LiDAR for steep slopes classified as very unstable slopes. Noise and vegetation of the acquired scan data were removed to generate point cloud data with a rock or mountain model without vegetation. The RMSE of the registration accuracy was 0.0156 m. From the point cloud data, the inclination angle, height, shape, valley, collapse and loss were evaluated. As a result, various risk assessment parameters can be checked at once. In addition, it is expected to be used as basic data for constructing steep slope DB, providing visualization data, and time series analysis in the future.</p>


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 660 ◽  
Author(s):  
Yangbo Deng ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Qiaoya Xie ◽  
Yita Hsieh ◽  
...  

The accurate estimation of leaf area is of great importance for the acquisition of information on the forest canopy structure. Currently, direct harvesting is used to obtain leaf area; however, it is difficult to quickly and effectively extract the leaf area of a forest. Although remote sensing technology can obtain leaf area by using a wide range of leaf area estimates, such technology cannot accurately estimate leaf area at small spatial scales. The purpose of this study is to examine the use of terrestrial laser scanning data to achieve a fast, accurate, and non-destructive estimation of individual tree leaf area. We use terrestrial laser scanning data to obtain 3D point cloud data for individual tree canopies of Pinus massoniana. Using voxel conversion, we develop a model for the number of voxels and canopy leaf area and then apply it to the 3D data. The results show significant positive correlations between reference leaf area and mass (R2 = 0.8603; p < 0.01). Our findings demonstrate that using terrestrial laser point cloud data with a layer thickness of 0.1 m and voxel size of 0.05 m can effectively improve leaf area estimations. We verify the suitability of the voxel-based method for estimating the leaf area of P. massoniana and confirmed the effectiveness of this non-destructive method.


2021 ◽  
Vol 13 (1) ◽  
pp. 705-716
Author(s):  
Qiuji Chen ◽  
Xin Wang ◽  
Mengru Hang ◽  
Jiye Li

Abstract The correct individual tree segmentation of the forest is necessary for extracting the additional information of trees, such as tree height, crown width, and other tree parameters. With the development of LiDAR technology, the research method of individual tree segmentation based on point cloud data has become a focus of the research community. In this work, the research area is located in an underground coal mine in Shenmu City, Shaanxi Province, China. Vegetation information with and without leaves in this coal mining area are obtained with airborne LiDAR to conduct the research. In this study, we propose hybrid clustering technique by combining DBSCAN and K-means for segmenting individual trees based on airborne LiDAR point cloud data. First, the point cloud data are processed for denoising and filtering. Then, the pre-processed data are projected to the XOY plane for DBSCAN clustering. The number and coordinates of clustering centers are obtained, which are used as an input for K-means clustering algorithm. Finally, the results of individual tree segmentation of the forest in the mining area are obtained. The simulation results and analysis show that the new method proposed in this paper outperforms other methods in forest segmentation in mining area. This provides effective technical support and data reference for the study of forest in mining areas.


Sign in / Sign up

Export Citation Format

Share Document