Surface modification of SU-8 by photografting of functional polymers for lab-on-a-chip applications

Author(s):  
Zhan Gao ◽  
D.B. Henthorn ◽  
Chang-Soo Kim
Author(s):  
Stuart J. Williams ◽  
Aloke Kumar ◽  
Steven T. Wereley

Recently, we have demonstrated an optically induced AC electrokinetic technique that rapidly, continuously and selectively concentrates colloids on an electrode surface [1–3]. This is demonstrated with a highly focused near-infrared (1,064 nm) laser beam applied to parallel plate electrodes separated by 50 μm without any additional surface modification or patterning of the electrodes. This dynamic optically-induced technique can be applied towards a variety of lab-on-a-chip applications. This paper will explain its physical mechanisms and showcase recent results regarding its particle sorting capabilities. This dynamic, optically induced fluid and particle manipulation technique could be used for a variety of lab-on-a-chip applications.


Author(s):  
Stuart J. Williams ◽  
Aloke Kumar ◽  
Steven T. Wereley

Recently, we have demonstrated electrothermal hydrodynamics with an external heating source of a highly focused 1,064 nm laser beam [1]. This phenomenon, when coupled with particle-electrode electrokinetic interactions, has led to the rapid and selective concentration of suspended colloids [2–6]. This technique, termed Rapid Electrokinetic Patterning (REP) was demonstrated without any additional surface modification or patterning of the electrodes. This dynamic, optically induced fluid and particle manipulation technique could be used for a variety of lab-on-a-chip applications. However, there are additional effects that have yet to be investigated that are important for a complete understanding of REP. This paper showcases experimental particle-particle behavior observations by varying particle diameter, electrode material, and preliminary results of varying fluid electrical conductivity.


Langmuir ◽  
2001 ◽  
Vol 17 (6) ◽  
pp. 1956-1960 ◽  
Author(s):  
Bryony Coupe ◽  
Maria E. Evangelista ◽  
Rachel M. Yeung ◽  
Wei Chen

Author(s):  
Nazmul Islam ◽  
Davood Askari

The AC electrothermal effect can improve the pumping rate by multiple folds compared to other eletrokinetic techniques in micro/nano scale. In this research, the AC electrothermal micropump velocity will be optimized by surface modification using a biocompatible hydrophobic nanocomposite monolayer. This coating will modify the micropump surface to a hydrophobic surface and reduce the friction losses at the liquid-solid interface, and eventually increase the micropumping velocity. The advent of microfabrication and integrated miniature pumps has applications on biomedical devices such as implantable glucose sensors. These micropumps require the transport of small amounts of fluids (μL range). When utilized in biomedical applications, micropumps can be used to administer small amounts of medication (e.g. insulin) at regular time intervals. These micropumps can also be integrated with the lab-on-a-chip devices and can provide inexpensive disposable devices. To demonstrate the fluid manipulation in high conductive bio-fluids, we have developed an optimized AC electrothermal micropump using symmetrical electrode arrays.


Sign in / Sign up

Export Citation Format

Share Document