Optical transduction of the chemical sensitivity of porphyrin nanotubes by CSPT platform

Author(s):  
E. Martinelli ◽  
F. Dini ◽  
A. D'Amico ◽  
C. Di Natale ◽  
D. Monti ◽  
...  
Keyword(s):  
2002 ◽  
Vol 41 (06) ◽  
pp. 233-239 ◽  
Author(s):  
C. Hausteiner ◽  
A. Drzezga ◽  
P. Bartenstein ◽  
M. Schwaiger ◽  
H. Förstl ◽  
...  

SummaryAim: Multiple chemical sensitivity (MCS) is a controversially discussed symptom complex. Patients afflicted by MCS react to very low and generally nontoxic concentrations of environmental chemicals. It has been suggested that MCS leads to neurotoxic damage or neuroimmunological alteration in the brain detectable by positron emission tomography (PET) and single photon emission computer tomography (SPECT). These methods are often applied to MCS patients for diagnosis, although they never proved appropriate. Method: We scanned 12 MCS patients with PET, hypothesizing that it would reveal abnormal findings. Results: Mild glucose hypometabolism was present in one patient. In comparison with normal controls, the patient group showed no significant functional brain changes. Conclusion: This first systematic PET study in MCS patients revealed no hint of neurotoxic or neuroimmuno-logical brain changes of functional significance.


2005 ◽  
Vol 59 (11) ◽  
pp. 1631-1635
Author(s):  
Yukio Yanagisawa
Keyword(s):  

Author(s):  
Hong-Jae Chae ◽  
Byoung-Gwon Kim ◽  
Hwan-Cheol Kim ◽  
Mi-Young Lee ◽  
Jong-Han Leem

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1799
Author(s):  
Tianyu Yang ◽  
Liang Zhang ◽  
Yunjie Shi ◽  
Shidi Liu ◽  
Yuming Dong

A photonic crystal fiber (PCF) with high relative sensitivity was designed and investigated for the detection of chemical analytes in the terahertz (THz) regime. To ease the complexity, an extremely simple cladding employing four struts is adopted, which forms a rectangular shaped core area for filling with analytes. Results of enormous simulations indicate that a minimum 87.8% relative chemical sensitivity with low confinement and effective material absorption losses can be obtained for any kind of analyte, e.g., HCN (1.26), water (1.33), ethanol (1.35), KCN (1.41), or cocaine (1.50), whose refractive index falls in the range of 1.2 to 1.5. Besides, the PCF can also achieve high birefringence (∼0.01), low and flat dispersion, a large effective modal area, and a large numerical aperture within the investigated frequency range from 0.5 to 1.5 THz. We believe that the proposed PCF can be applied to chemical sensing of liquid and THz systems requiring wide-band polarization-maintaining transmission and low attenuation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Simone Ruggeri ◽  
Johnny Habchi ◽  
Sean Chia ◽  
Robert I. Horne ◽  
Michele Vendruscolo ◽  
...  

AbstractSignificant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases.


Sign in / Sign up

Export Citation Format

Share Document