Mobile sensing systems based on improved GDOP for target localization and tracking

Author(s):  
Chin-Der Wann
Author(s):  
Saad Iqbal ◽  
Usman Iqbal ◽  
Syed Ali Hassan

Target localization and tracking has always been a hot topic in all eras of communication studies. Conventional system used radars for the purpose of locating and/or tracking an object using the classical methods of signal processing. Radars are generally classified as active and passive, where the former uses both transmitter and receivers simultaneously to perform the localization task. On the other hand, passive radars use existing illuminators of opportunity such as wi-fi or GSM signals to perform the aforementioned tasks. Although they perform detection using classical correlation methods and CFAR, recently machine learning has been used in various application of passive sensing to elevate the system performance. The latest developed models for intelligent RF passive sensing system for both outdoor and indoor scenarios are discussed in this chapter, which will give insight to the readers about their designing.


2020 ◽  
Vol 53 (2) ◽  
pp. 9521-9528
Author(s):  
Julius Ibenthal ◽  
Luc Meyer ◽  
Michel Kieffer ◽  
Hélène Piet-Lahanier

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Zhang ◽  
Xiaolong Zheng ◽  
Zhanyong Tang ◽  
Tianzhang Xing ◽  
Xiaojiang Chen ◽  
...  

Mobile sensing has become a new style of applications and most of the smart devices are equipped with varieties of sensors or functionalities to enhance sensing capabilities. Current sensing systems concentrate on how to enhance sensing capabilities; however, the sensors or functionalities may lead to the leakage of users’ privacy. In this paper, we present WiPass, a way to leverage the wireless hotspot functionality on the smart devices to snoop the unlock passwords/patterns without the support of additional hardware. The attacker can “see” your unlock passwords/patterns even one meter away. WiPass leverages the impacts of finger motions on the wireless signals during the unlocking period to analyze the passwords/patterns. To practically implement WiPass, we are facing the difficult feature extraction and complex unlock passwords matching, making the analysis of the finger motions challenging. To conquer the challenges, we use DCASW to extract feature and hierarchical DTW to do unlock passwords matching. Besides, the combination of amplitude and phase information is used to accurately recognize the passwords/patterns. We implement a prototype of WiPass and evaluate its performance under various environments. The experimental results show that WiPass achieves the detection accuracy of 85.6% and 74.7% for passwords/patterns detection in LOS and in NLOS scenarios, respectively.


2019 ◽  
Vol 11 (11) ◽  
pp. 4439-4451 ◽  
Author(s):  
Francisco Laport ◽  
Emilio Serrano ◽  
Javier Bajo

Sign in / Sign up

Export Citation Format

Share Document