Identification of the 2-Axes Pneumatic Artificial Muscle (PAM) Robot Arm Using Double NARX Fuzzy Model and Genetic Algorithm

Author(s):  
Ho Pham Huy Anh ◽  
Kyoung Kwan Ahn ◽  
Jong Il Yoon
2020 ◽  
Vol sceeer (3d) ◽  
pp. 25-29
Author(s):  
Alaa Al-Ibadi

This paper presents a simple and fast design and implementation for a soft robot arm. The proposed continuum arm has been built by a single self-bending contraction actuator (SBCA) with two-fingers soft gripper. Because of the valuable advantages of the pneumatic artificial muscle (PAM), this continuum arm provides a high degree of safety to individuals. The proposed soft robot arm has a bending behaviour of more 180° at 3.5 kg, while, its weight is 0.7 kg. Moreover, it is designed to assist the people by reducing the number of backbends and that leads to a decrease in the possibility of lower back pain.


Author(s):  
Christopher J. Netwall ◽  
James P. Thomas ◽  
Michael S. Kubista ◽  
Kerry A. Griffith ◽  
Christopher Kindle ◽  
...  

Abstract The U.S. Naval Research Laboratory (NRL) has been developing a space-rated 7 degree of freedom (DOF) robot arm with a high payload-to-mass ratio as an alternative design to motor-gear driven robotic manipulators. The robot arm employs antagonistic pairs of pneumatic artificial muscle (PAM) actuators to control each degree-of-freedom (DOF) to achieve large force outputs relative to the PAM component masses. A novel feature of the NRL PAM actuator was the integration of the pneumatic control components inside the pressure-bladder, which not only reduces the volume of the robotic arm hardware but also reduces the pressurized-gas actuation volume in the PAM enabling significant reductions in gas consumption during actuation. This multifunctional design enables reductions in launch-weight costs and increases in operational endurance for space applications. The integration of these PAMs into a well-designed robotic-arm structure, in tandem with a newly developed control algorithm, has the potential to exceed the performance metrics of traditional motor-driven robot arms. This paper describes the development of the improved efficiency PAM design that is advancing this technology towards space flight readiness.


Author(s):  
Christopher J. Netwall ◽  
James P. Thomas ◽  
Michael S. Kubista ◽  
Kerry A. Griffith ◽  
Christopher Kindle ◽  
...  

Abstract The U.S. Naval Research Laboratory (NRL) has been developing a space-rated 7 degree of freedom (DOF) robot arm with a high payload-to-mass ratio as an alternative design to motor-gear driven robotic manipulators. The robot arm employs antagonistic pairs of pneumatic artificial muscle (PAM) actuators to control each degree-of-freedom (DOF) to achieve large force outputs relative to the PAM component masses. A novel feature of the NRL PAM actuator was the integration of the pneumatic control components inside the pressure-bladder, which not only reduces the volume of the robotic arm hardware but also reduces the pressurized-gas actuation volume in the PAM enabling significant reductions in gas consumption during actuation. This multifunctional design enables reductions in launch-weight costs and increases in operational endurance for space applications. The integration of these PAMs into a well-designed robotic-arm structure, in tandem with a newly developed control algorithm, has the potential to exceed the performance metrics of traditional motor-driven robot arms. This paper describes the development of the improved efficiency PAM design that is advancing this technology towards space flight readiness.


Sign in / Sign up

Export Citation Format

Share Document