A neural network architecture to learn the arm reach motion planning in a static cluttered environment

Author(s):  
P. Bendahan ◽  
P. Gorce
Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Patrice Bendahan ◽  
Philippe Gorce

In this article, we present a learning model that can control the kinematics motion of a simulated anthropomorphic arm in reaching and grasping tasks of a static prototypic object placed behind an obstacle of varying position and size. The network, composed of two generic neural network modules, learns to combine multi-modal arm-related information (trajectory parameters) as well as obstacle-related information (obstacle size and location). We based our simulation on the Via Point notion, which postulates that the reach motion planning is divided into successive positions of the arm. In order to determine these particular positions, some specific parameters have been extracted from an experimental protocol and constitute the pertinent parameters to be integrated into the model. This net of neural net determines the total path able to reach and grasp the prototypic object while avoiding an obstacle.


2016 ◽  
Vol 13 (2) ◽  
pp. 129-141 ◽  
Author(s):  
Anish Pandey ◽  
Dayal R. Parhi

Purpose This study concerns an on-line path planning technique for a behaviour-based wheeled mobile robot local navigation in an unknown environment with hurdles, using the feedforward back-propagation neural network sensor-actuator control technique. The purpose of this study is to find the non-collision path for the mobile robot moving towards the goal in a cluttered environment. Design/methodology/approach Neural network architecture input layers are the different hurdle distance information, which are acquired by an array of equipped sensors, and the output layer is the turning angle (motor control). In this way, the mobile robot is effectively being trained to move autonomously in the environment. Findings Computer simulation and real-time experimental results show that the proposed neural network controller can improve navigation performance in cluttered and unknown environments. Originality/value The proposed neural network controller gives better results (in terms of path length) as compared to previously developed models, which verifies the effectiveness of the proposed architecture.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document