Computation of satisfiability degree of a propositional formula using dependency matrix

Author(s):  
Shreekant Jere
2014 ◽  
Vol 556-562 ◽  
pp. 2567-2570
Author(s):  
He Jia Li ◽  
Xue Wang ◽  
Hai Feng Xu ◽  
Cheng Yao ◽  
Wen Ju Gao ◽  
...  

Aiming the problem of the armored vehicle's gun control system that there are many kinds of internal devices, complex fault reasons ,but no all-around and online fault diagnosis and state inspection mean, The automatic test platform for the gyroscope group with performance test and fault diagnosis for component and circuit is designed .The platform based on dependency matrix and optimal criterion of the maximum failure feature information entropy optimize test points ,choose optimal test points design. Performance test module is created and provides test result information for fault dictionary in fault diagnosis module. Automatic test platform is able to locate the circuit component failure.The platform is tested by actual vehicle experiment, and the results prove the reliability and validity of the platform.


2021 ◽  
Author(s):  
Lizhe Chen ◽  
Ji Wu ◽  
Haiyan Yang ◽  
Kui Zhang

Abstract Regression testing is required in each iteration of microservice systems. Regression testing selection, which reduces testing costs by selecting a subset from the original test cases, is one of the main techniques to optimize regression testing. Existing techniques mainly rely on the information retrieved from artifacts such as code files and system models. For microservice systems with service autonomy, development method diversity and a large amount of services, such artifacts are too difficultly obtained and costly processed to apply those approaches. This paper presents a regression testing selection approach called MRTS-BP, which needs the API gateway layer logs instead of code files and system models as inputs. By parsing the API gateway layer logs, our approach establishes the service dependency matrix, which in further is transformed into a directed graph with the services as nodes. Then, to find out which test cases are affected by service changes, an algorithm based on belief propagation is presented to compute the quantitative results of service-change propagation from the directed graph. Finally, the relationships between original test cases and service-change propagation results are established to select test cases with three strategies. To evaluate the efficiency of MRTS-BP, the empirical study based on four microservice systems is presented. A typical technique RTS-CFG is compared with MRTS-CFG and four experiments are setup to investigate four research questions. The results show that MRTS-BP can not only reduce the number of test cases by half compared with the retest-all strategy while ensuring the safety, but also save at least 20% testing time costs more than that of RTS-CFG. MRTS-BP is more practical than the techniques relying on the artifacts when the latter cannot be implemented due to the artifacts are difficult to obtain and process.


Author(s):  
Wenhao Qiu ◽  
Guangyao Lian ◽  
Haitao Man ◽  
Huijie Li

Author(s):  
Carla P. Gomes ◽  
Ashish Sabharwal ◽  
Bart Selman

Model counting, or counting the number of solutions of a propositional formula, generalizes SAT and is the canonical #P-complete problem. Surprisingly, model counting is hard even for some polynomial-time solvable cases like 2-SAT and Horn-SAT. Efficient algorithms for this problem will have a significant impact on many application areas that are inherently beyond SAT, such as bounded-length adversarial and contingency planning, and, perhaps most importantly, general probabilistic inference. Model counting can be solved, in principle and to an extent in practice, by extending the two most successful frameworks for SAT algorithms, namely, DPLL and local search. However, scalability and accuracy pose a substantial challenge. As a result, several new ideas have been introduced in the last few years that go beyond the techniques usually employed in most SAT solvers. These include division into components, caching, compilation into normal forms, exploitation of solution sampling methods, and certain randomized streamlining techniques using special constraints. This chapter discusses these techniques, exploring both exact methods as well as fast estimation approaches, including those that provide probabilistic or statistical guarantees on the quality of the reported lower or upper bound on the model count.


Author(s):  
Li Chen ◽  
Ashish Macwan

This paper presents our continued research efforts towards developing a decomposition-based solution approach for rapid computational redesign to support agile manufacturing of evolutionary products. By analogy to the practices used for physical machines, the proposed approach involves two general steps: diagnosis and repair. This paper focuses on the diagnosis step. for which a two-phase decomposition method is developed. The first phase, called design dependency analysis, systematizes and reorganizes the intrinsic coupling structure of the existing design model by analyzing and reordering the design dependency matrix (DDM) used to represent the functional dependence and couplings inherent in the design model. The second phase, called redesign partitioning analysis, uses this result to generate alternative redesign pattern solutions through a three-stage procedure. Each pattern solution delimits the portions of the design model that need to be re-computed. An example problem concerning the redesign of an automobile powertrain is used for method illustration. Our seed paper has presented a method for selecting the optimal redesign pattern solution from the alternatives generated through redesign partitioning analysis, and a sequel paper will discuss how to generate a corresponding re-computation strategy and redesign plan (redesign shortcut roadmap).


2019 ◽  
Vol 9 (2) ◽  
pp. 311 ◽  
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yongchuan Tang

Aiming at solving the multiple fault diagnosis problem as well as the sequence of all the potential multiple faults simultaneously, a new multiple fault diagnosis method based on the dependency model method as well as the knowledge in test results and the prior probability of each fault type is proposed. Firstly, the dependency model of the system can be built and used to formulate the fault-test dependency matrix. Then, the dependency matrix is simplified according to the knowledge in the test results of the system. After that, the logic ‘OR’ operation is performed on the feature vectors of the fault status in the simplified dependency matrix to formulate the multiple fault dependency matrix. Finally, fault diagnosis is based on the multiple fault dependency matrix and the ranking of each fault type calculated basing on the prior probability of each fault status. An illustrative numerical example and a case study are presented to verify the effectiveness and superiority of the proposed method.


Author(s):  
K. Darshana Abeyrathna ◽  
Ole-Christoffer Granmo ◽  
Xuan Zhang ◽  
Lei Jiao ◽  
Morten Goodwin

Relying simply on bitwise operators, the recently introduced Tsetlin machine (TM) has provided competitive pattern classification accuracy in several benchmarks, including text understanding. In this paper, we introduce the regression Tsetlin machine (RTM), a new class of TMs designed for continuous input and output, targeting nonlinear regression problems. In all brevity, we convert continuous input into a binary representation based on thresholding, and transform the propositional formula formed by the TM into an aggregated continuous output. Our empirical comparison of the RTM with state-of-the-art regression techniques reveals either superior or on par performance on five datasets. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1710 ◽  
Author(s):  
Fei Guan ◽  
Wei-Wei Cui ◽  
Lian-Feng Li ◽  
Jie Wu

Sensor selection plays an essential and fundamental role in prognostics and health management technology, and it is closely related to fault diagnosis, life prediction, and health assessment. The existing methods of sensor selection do not have an evaluation standard, which leads to different selection results. It is not helpful for the selection and layout of sensors. This paper proposes a comprehensive evaluation method of sensor selection for prognostics and health management (PHM) based on grey clustering. The described approach divides sensors into three grey classes, and defines and quantifies three grey indexes based on a dependency matrix. After a brief introduction to the whitening weight function, we propose a combination weight considering the objective data and subjective tendency to improve the effectiveness of the selection result. Finally, the clustering result of sensors is obtained by analyzing the clustering coefficient, which is calculated based on the grey clustering theory. The proposed approach is illustrated by an electronic control system, in which the effectiveness of different methods of sensor selection is compared. The result shows that the technique can give a convincing analysis result by evaluating the selection results of different methods, and is also very helpful for adjusting sensors to provide a more precise result. This approach can be utilized in sensor selection and evaluation for prognostics and health management.


Sign in / Sign up

Export Citation Format

Share Document