Iterative Hard Thresholding with Memory-based Dynamic Sparse Wireless Channel Estimator

Author(s):  
Olutayo Oyeyemi Oyerinde ◽  
Adam Flizikowski ◽  
Tomasz Marciniak
Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 842
Author(s):  
Olutayo Oyeyemi Oyerinde ◽  
Adam Flizikowski ◽  
Tomasz Marciniak

The channel of the broadband wireless communications system can be modeled as a dynamic sparse channel. Such a channel is difficult to reconstruct by using linear channel estimators that are normally employed for dense channels’ estimation because of their lack of capacity to use the inherent channel’s sparsity. This paper focuses on reconstructing this type of time-varying sparse channel by extending a recently proposed dynamic channel estimator. Specifically, variable step size’s mechanism and variable momentum parameter are incorporated into traditional Iterative Hard Thresholding-based channel estimator to develop the proposed Iterative Hard Thresholding with Combined Variable Step Size and Momentum (IHT-wCVSSnM)-based estimator. Computer simulations carried out in the context of a wireless communication system operating in a dynamic sparse channel, show that the proposed IHT-wCVSSnM-based estimator performs better than all the other estimators significantly. However, the computational complexity cost of the proposed estimator is slightly higher than the closely performing channel estimator. Nevertheless, the inherent complexity cost of the proposed estimator could be compromised in a situation where the system’s performance is of higher priority when compared with the computational complexity cost.


Author(s):  
Kosuke Furuya ◽  
Shintaro Hara ◽  
Kenta Seino ◽  
Shogo Muramatsu

This paper proposes a boundary operation technique of two-dimensional (2D) non-separable oversampled lapped transforms (NSOLT). The proposed technique is based on a lattice structure consisting of the 2D separable block discrete cosine transform and non-separable redundant support-extension processes. The atoms are allowed to be anisotropic with the oversampled, symmetric, real-valued, compact-supported, and overlapped property. First, the blockwise implementation is developed so that the atoms can be locally controlled. The local control of atoms is shown to maintain perfect reconstruction. This property leads an atom termination (AT) technique as a boundary operation. The technique overcomes the drawback of NSOLT that the popular symmetric extension method is invalid. Through some experimental results with iterative hard thresholding, the significance of AT is verified.


Sign in / Sign up

Export Citation Format

Share Document