Framework for Model-Based Design and Verification of Human-in-the-Loop Cyber-Physical Systems

Author(s):  
Filip Cuckov ◽  
Grant Rudd ◽  
Liam Daly
2019 ◽  
Vol 47 ◽  
pp. 249-265 ◽  
Author(s):  
Christos Emmanouilidis ◽  
Petros Pistofidis ◽  
Luka Bertoncelj ◽  
Vassilis Katsouros ◽  
Apostolos Fournaris ◽  
...  

2017 ◽  
Vol 90 (8-9) ◽  
pp. 1191-1204 ◽  
Author(s):  
Ping Wang ◽  
Jing Liu ◽  
Jinlong Lin ◽  
Chao-Hsien Chu

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 253-258
Author(s):  
Iris Gräßler ◽  
Dominik Wiechel ◽  
Daniel Roesmann ◽  
Henrik Thiele

2018 ◽  
Vol 66 (10) ◽  
pp. 849-858
Author(s):  
Christopher Haubeck ◽  
Heiko Bornholdt ◽  
Winfried Lamersdorf ◽  
Abhishek Chakraborty ◽  
Alexander Fay

Abstract Production systems are no longer rigid, unyielding, and isolated systems anymore. They are rather interconnected cyber-physical systems with an evolution process that needs to be supported. To enable reusability in evolution, a change-first cooperative support is proposed that relies on model-based evolution steps. The approach establishes a network-wide evolution process in a peer-to-peer networked community. Thus, moving towards decentralised marketplaces for evolution steps.


2016 ◽  
Vol 13 (1) ◽  
pp. 40-52 ◽  
Author(s):  
Peter Herrmann ◽  
Jan Olaf Blech ◽  
Fenglin Han ◽  
Heinz Schmidt

A method preserving cyber-physical systems to operate safely in a joint physical space is presented. It comprises the model-based development of the control software and simulators for the continuous physical environment as well as proving the models for spatial and real-time properties. The corresponding toolchain is based on the model-based engineering tool Reactive Blocks and the spatial model checker BeSpaceD. The real-time constraints to be kept by the controller are proven using the model checker UPPAAL.


Sign in / Sign up

Export Citation Format

Share Document