cyber physical production systems
Recently Published Documents


TOTAL DOCUMENTS

349
(FIVE YEARS 191)

H-INDEX

19
(FIVE YEARS 9)

2022 ◽  
Vol 14 (2) ◽  
pp. 838
Author(s):  
Inéz Labucay

Only one third of studies on the Industry 4.0–sustainability link have been conducted in manufacturing, despite its centrality to “ensuring sustainable consumption and production patterns” (UN Sustainable Development Goal nr. 12). The European Ecodesign Directive singled out machine tools as key to the sustainability transition, not least due to their high energy usage and their increasingly becoming enmeshed in cyber-physical production systems. This paper aims to find out whether the digital transformation underway in machine tools is sustainable as well as to identify its central technological pathways. Externalities in machine tools are tracked over three decades (1990–2018) by means of a multi-method setting: (1) mapping the Technological Innovation System (TIS) of machine tools; (2) co-occurrence analysis of transnational patent families, in order to reduce geographical and market distortions (Questel’s FAMPAT); and (3) analysis of the incidence of digital and sustainable technologies in machine tools patent applications (WIPO PATENTSCOPE). A smart sustainability transition is currently not hampered by a lack of smart technologies but rather by the sluggish introduction of sustainable machine tools. Cyber-physical and robot machine tools have been found to be central pathways to a smart sustainability transition. Implications for harnessing externalities reach beyond the machine tools industry.


2022 ◽  
Vol 8 ◽  
Author(s):  
Birgit Vogel-Heuser ◽  
Julia A. M. Reif ◽  
Jan-Hendrik Passoth ◽  
Christoph Huber ◽  
Felix C. Brodbeck ◽  
...  

Abstract Interdisciplinary engineering of cyber physical production systems (CPPS) are often subject to delay, cost overrun and quality problems or may even fail due to the lack of efficient information exchange between multiple interdisciplinary teams working in complex networks within and across companies. We propose a direct integration of multiteam and organisational aspects into the graphical notation of the systems engineering workflow. BPMN++, with eight new notational elements and two subdiagrams, enables the modelling of the required cooperation aspects. BPMN++ provides an improved overview, uniform notation, more compact presentation and easier modifiability from an engineering point of view. We also included a first set of empirical studies and historical qualitative and quantitative data in addition to subjective expert-based ratings to increase validity. The use case introduced to explain the procedure and the notation is derived from surveys in plant manufacturing focussing on the start-up phase and decision support at site. This, in particular, is one of the most complex and critical phases with potentially high economic impact. For evaluation purposes, we compare two alternative solutions for a short-term management decision in the start-up phase of CPPS using the BPMN++ approach.


Author(s):  
Guido Vinci Carlavan ◽  
Daniel Alejandro Rossit

Industry 4.0 proposes the incorporation of information technologies at all levels of the production process. By incorporating these technologies, Industry 4.0 provides new tools for production planning processes, allowing to address problems in an innovative and efficient manner. From these technologies and tools, it is that in this work a One-of-a-Kind Production (OKP) process is approached, where the products tend to be highly customized. OKP implies working with a very large variability within production, demanding very efficient planning systems. For this, a planning model based on CONWIP-type strategies was proposed, which seeks to level the production of a shop floor configured in the form of a job shop. Even more, for having a more realistic shop-floor representation, machine failures have been included in the model. In turn, different dispatching rules were proposed to study the performance and analyze the behaviour of the system. From the results obtained, it is observed that, when the production demand is very exigent in relation with the capacity of the system, the dispatching rules that analyze the workload generated by each job tend to perform better. However, when the demand on the capacity of the production system is less intense, the rules associated with due dates are the ones that obtain the best results.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042062
Author(s):  
A V Gurjanov ◽  
D A Zakoldaev ◽  
I O Zharinov ◽  
O O Zharinov

Abstract Cyber-modelling is the information models simulation process describing in a mathematical and formal logic languages (phenomenon models) how cyber-physical systems interaction mechanisms are united with different control laws and parameter values. The equation complexity represented in different levels of cyber-physical production systems hierarchy and non-equations of algebra, logic, end-subtraction, vector and matrices form in a discreet and uninterrupted times are defined with an aggregated number in the industrial automatics element control loop. The cyber-modelling is done for statistic and dynamic processes and equipment states being monitored in a virtual environment fixating actual in a time interval technological data. The cyber-modelling is done with integrated calculation equipment systems with parallel physical production processes of item manufacturing. The model time faster than physical processes let prognosticate the corrections modifying control signals and phase variables of cyber-physical systems united in an assembly conveyor. The cyber-modelling advantage is an expanded number of cycles to optimize the technological processes, which are calculated with integrated calculation systems using consecutive approximation method. They describe the cyber-modelling technology and propose the information models based on phenomenon cyber-physical production processes descriptions with general control theory terms, calculations and connection for hierarchy controlling structures.


Author(s):  
Azfar Khalid ◽  
Zeashan Hameed Khan ◽  
Muhammad Idrees ◽  
Pierre Kirisci ◽  
Zied Ghrairi ◽  
...  

2021 ◽  
Vol 11 (20) ◽  
pp. 9590
Author(s):  
Hajo Wiemer ◽  
Alexander Dementyev ◽  
Steffen Ihlenfeldt

With the trend of increasing sensors implementation in production systems and comprehensive networking, essential preconditions are becoming required to be established for the successful application of data-driven methods of equipment monitoring, process optimization, and other relevant automation tasks. As a protocol, these tasks should be performed by engineers. Engineers usually do not have enough experience with data mining or machine learning techniques and are often skeptical about the world of artificial intelligence (AI). Quality assurance of AI results and transparency throughout the IT chain are essential for the acceptance and low-risk dissemination of AI applications in production and automation technology. This article presents a conceptual method of the stepwise and level-wise control and improvement of data quality as one of the most important sources of AI failures. The appropriate process model (V-model for quality assurance) forms the basis for this.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2497
Author(s):  
Mihai Andronie ◽  
George Lăzăroiu ◽  
Mariana Iatagan ◽  
Cristian Uță ◽  
Roxana Ștefănescu ◽  
...  

With growing evidence of deep learning-assisted smart process planning, there is an essential demand for comprehending whether cyber-physical production systems (CPPSs) are adequate in managing complexity and flexibility, configuring the smart factory. In this research, prior findings were cumulated indicating that the interoperability between Internet of Things-based real-time production logistics and cyber-physical process monitoring systems can decide upon the progression of operations advancing a system to the intended state in CPPSs. We carried out a quantitative literature review of ProQuest, Scopus, and the Web of Science throughout March and August 2021, with search terms including “cyber-physical production systems”, “cyber-physical manufacturing systems”, “smart process manufacturing”, “smart industrial manufacturing processes”, “networked manufacturing systems”, “industrial cyber-physical systems,” “smart industrial production processes”, and “sustainable Internet of Things-based manufacturing systems”. As we analyzed research published between 2017 and 2021, only 489 papers met the eligibility criteria. By removing controversial or unclear findings (scanty/unimportant data), results unsupported by replication, undetailed content, or papers having quite similar titles, we decided on 164, chiefly empirical, sources. Subsequent analyses should develop on real-time sensor networks, so as to configure the importance of artificial intelligence-driven big data analytics by use of cyber-physical production networks.


Author(s):  
Ada Bagozi ◽  
Devis Bianchini ◽  
Valeria De Antonellis

AbstractCyber-physical systems are hybrid networked cyber and engineered physical elements that record data (e.g. using sensors), analyse them using connected services, influence physical processes and interact with human actors using multi-channel interfaces. Examples of CPS interacting with humans in industrial production environments are the so-called cyber-physical production systems (CPPS), where operators supervise the industrial machines, according to the human-in-the-loop paradigm. In this scenario, research challenges for implementing CPPS resilience, promptly reacting to faults, concern: (i) the complex structure of CPPS, which cannot be addressed as a monolithic system, but as a dynamic ecosystem of single CPS interacting and influencing each other; (ii) the volume, velocity and variety of data (Big Data) on which resilience is based, which call for novel methods and techniques to ensure recovery procedures; (iii) the involvement of human factors in these systems. In this paper, we address the design of resilient cyber-physical production systems (R-CPPS) in digital factories by facing these challenges. Specifically, each component of the R-CPPS is modelled as a smart machine, that is, a cyber-physical system equipped with a set of recovery services, a Sensor Data API used to collect sensor data acquired from the physical side for monitoring the component behaviour, and an operator interface for displaying detected anomalous conditions and notifying necessary recovery actions to on-field operators. A context-based mediator, at shop floor level, is in charge of ensuring resilience by gathering data from the CPPS, selecting the proper recovery actions and invoking corresponding recovery services on the target CPS. Finally, data summarisation and relevance evaluation techniques are used for supporting the identification of anomalous conditions in the presence of high volume and velocity of data collected through the Sensor Data API. The approach is validated in a food industry real case study.


2021 ◽  
Vol 11 (19) ◽  
pp. 9013
Author(s):  
Douha Macherki ◽  
Thierno M. L. Diallo ◽  
Jean-Yves Choley ◽  
Amir Guizani ◽  
Maher Barkallah ◽  
...  

Production systems must be able to adapt to increasingly frequent internal and external changes. Cyber-Physical Production Systems (CPPS), thanks to their potential capacity for self-reconfiguration, can cope with this need for adaptation. To implement the self-reconfiguration functionality in economical and safe conditions, CPPS must have appropriate tools and contextualized information. This information can be organized in the form of an architecture. In this paper, after the analysis of several holonic and nonholonic architectures, we propose a holonic architecture that allows for reliable and efficient reconfiguration. We call this architecture QHAR (Q-Holonic-based ARchitecture). QHAR is constructed based on the idea of a Q-holon, which has four dimensions (physical, cyber, human, and energy) and can exchange three flows (energy, data, and materials). It is a generic Holon that can represent any entity or actor of the supply chain. The QHAR is structured in three levels: centralized control level, decentralized control level, and execution level. QHAR implements the principle of an oligarchical control architecture by deploying both hierarchical and heterarchical control approaches. This ensures the overall system performance and reactivity to hazards. The proposed architecture is tested and validated on a case study.


Sign in / Sign up

Export Citation Format

Share Document