Automatic Detection of Flood Severity Level from Flood Videos using Deep Learning Models

Author(s):  
Kanishk Lohumi ◽  
Sudip Roy
2021 ◽  
Author(s):  
Nikolaos Bakalos ◽  
Iason Katsamenis ◽  
Eleni Eirini Karolou ◽  
Nikolaos Doulamis

Man overboard incidents in a maritime vessel are serious accidents where the rapid detection of the even is crucial for the safe retrieval of the person. To this end, the use of deep learning models as automatic detectors of these scenarios has been tested and proven efficient, however, the use of correct capturing methods is imperative in order for the learning framework to operate well. Thermal data can be a suitable method of monitoring, as they are not affected by illumination changes and are able to operate in rough conditions, such as open sea travel. We investigate the use of a convolutional autoencoder trained over thermal data, as a mechanism for the automatic detection of man overboard scenarios. Morever, we present a dataset that was created to emulate such events and was used for training and testing the algorithm.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012003
Author(s):  
M A Markom ◽  
S Mohd Taha ◽  
A H Adom ◽  
A S Abdull Sukor ◽  
A S Abdul Nasir ◽  
...  

Abstract COVID19 chest X-ray has been used as supplementary tools to support COVID19 severity level diagnosis. However, there are challenges that required to face by researchers around the world in order to implement these chest X-ray samples to be very helpful to detect the disease. Here, this paper presents a review of COVID19 chest X-ray classification using deep learning approach. This study is conducted to discuss the source of images and deep learning models as well as its performances. At the end of this paper, the challenges and future work on COVID19 chest X-ray are discussed and proposed.


Author(s):  
Dmytro Tkachenko ◽  
Ihor Krush ◽  
Vitalii Mykhalko ◽  
Anatolii Petrenko

This paper contains a review and analysis of applications of modern ma-chine learning approaches to solve sleep apnea severity level detection by localization of apnea episodes and prediction of the subsequent apnea episodes. We demonstrate that signals provided by cheap wearable devices can be used to solve typical tasks of sleep apnea detection. We review major publicly available datasets that can be used for training respective deep learning models, and we analyze the usage options of these datasets. In particular, we prove that deep learning could improve the accuracy of sleep apnea classification, sleep apnea localization, and sleep apnea prediction, especially using more complex models with multimodal data from several sensors.


2021 ◽  
Vol 1099 (1) ◽  
pp. 012050
Author(s):  
Anju Yadav ◽  
Vivek Kumar Verma ◽  
Vipin Pal ◽  
Saumya Singh

2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document