A 320x240-pixel Sub-centimeter Resolution Time-of-Flight Image Sensor Design with Structure and Doping Optimized Pinned Photodiode Pixels

Author(s):  
Junwei Yang ◽  
Weiwei Shi ◽  
Zhiyu Huang ◽  
Yuan Xu ◽  
Yanghao Zheng ◽  
...  
Author(s):  
Seong-Jin Kim ◽  
Sang-Wook Han ◽  
Byongmin Kang ◽  
Keechang Lee ◽  
James D. K. Kim ◽  
...  

2010 ◽  
Author(s):  
Hiroaki Takeshita ◽  
Tomonari Sawada ◽  
Tetsuya Iida ◽  
Keita Yasutomi ◽  
Shoji Kawahito

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 454
Author(s):  
Juyeong Kim ◽  
Keita Yasutomi ◽  
Keiichiro Kagawa ◽  
Shoji Kawahito

This paper presents a high-linearity high-resolution time-of-flight (ToF) linear-array digital image sensor using a time-domain negative feedback technique. A coarse ToF measurement loop uses a 5-bit digital-to-time converter (DTC) and a delayed gating-pulse generator for time-domain feedback to find the zero of the difference between ToF and the digital estimate of the gating-pulse delay while maintaining a constant operating point of the analog readout circuits. A fine ToF measurement uses a delta-sigma modulation (DSM) loop using the time-domain feedback with a bit-stream signal form. Because of the self-contained property of the DSM for low distortion and noise exploited by the oversampling signal processing, the proposed technique provides high-linearity and high-range resolution in the fine ToF measurement. A prototype ToF sensor of 16.8 × 16.8 μm2 two-tap pixels and fabricated in a 0.11 μm (1P4M) CMOS image sensors (CIS) process achieves +0.9%/−0.47% maximum nonlinearity error and a resolution of 0.24 mm (median) for the measurement range of 0–1.05 m. The ToF sensor produces an 11-bit fully digital output with a ToF measurement time of 22.4 ms.


1986 ◽  
Vol 33 (6) ◽  
pp. 735-742 ◽  
Author(s):  
A. Yusa ◽  
J. Nishizawa ◽  
M. Imai ◽  
H. Yamada ◽  
J. Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document