A Web Application Load Prediction Model Using Recurrent Neural Network in Cloud

Author(s):  
Minh Dang ◽  
Myungsik Yoo
Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6460
Author(s):  
Dae-Yeon Kim ◽  
Dong-Sik Choi ◽  
Jaeyun Kim ◽  
Sung Wan Chun ◽  
Hyo-Wook Gil ◽  
...  

In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.


Author(s):  
Mengxiang Zhuang ◽  
Qixin Zhu

Background: Energy conservation has always been a major issue in our country, and the air conditioning energy consumption of buildings accounts for the majority of the energy consumption of buildings. If the building load can be predicted and the air conditioning equipment can respond in advance, it can not only save energy, but also extend the life of the equipment. Introduction: The Neural network proposed in this paper can deeply analyze the load characteristics through three gate structures, which is helpful to improve the prediction accuracy. Combined with grey relational degree method, the prediction speed can be accelerated. Method: This paper introduces a grey relational degree method to analyze the factors related to air conditioning load and selects the best ones. A Long Short Term Memory Neural Network (LSTMNN) prediction model was established. In this paper, grey relational analysis and LSTMNN are combined to predict the air conditioning load of an office building, and the predicted results are compared with the real values. Results: Compared with Back Propagation Neural Network (BPNN) prediction model and Support Vector Machine (SVM) prediction model, the simulation results show that this method has better effect on air conditioning load prediction. Conclusion: Grey relational degree analysis can extract the main factors from the numerous data, which is more convenient and quicker without repeated trial and error. LSTMNN prediction model not only considers the relation of air conditioning load on time series, but also considers the nonlinear relation between load and other factors. This model has higher prediction accuracy, shorter prediction time and great application potential.


2019 ◽  
Vol 142 (5) ◽  
Author(s):  
Byeongho Yu ◽  
Dongsu Kim ◽  
Heejin Cho ◽  
Pedro Mago

Abstract Thermal load prediction is a key part of energy system management and control in buildings, and its accuracy plays a critical role to improve building energy performance and efficiency. Regarding thermal load prediction, various types of prediction model have been considered and studied, such as physics-based, statistical, and machine learning models. Physical models can be accurate but require extended lead time for model development. Statistical models are relatively simple to develop and require less computation time, but they may not provide accurate results for complex energy systems with intricate nonlinear dynamic behaviors. This study proposes an artificial neural network (ANN) model, one of the prevalent machine learning methods to predict building thermal load, combining with the concept of nonlinear autoregressive with exogenous inputs (NARX). NARX-ANN prediction model is distinguished from typical ANN models because the NARX concept can address nonlinear system behaviors effectively based on its recurrent architectures and time indexing features. To examine the suitability and validity of NARX-ANN model for building thermal load prediction, a case study is carried out using the field data of an academic campus building at Mississippi State University (MSU). Results show that the proposed NARX-ANN model can provide an accurate and robust prediction performance and effectively address nonlinear system behaviors in the prediction.


2021 ◽  
Vol 3 ◽  
Author(s):  
Uwe Dick ◽  
Maryam Tavakol ◽  
Ulf Brefeld

We present a data-driven model that rates actions of the player in soccer with respect to their contribution to ball possession phases. This study approach consists of two interconnected parts: (i) a trajectory prediction model that is learned from real tracking data and predicts movements of players and (ii) a prediction model for the outcome of a ball possession phase. Interactions between players and a ball are captured by a graph recurrent neural network (GRNN) and we show empirically that the network reliably predicts both, player trajectories as well as outcomes of ball possession phases. We derive a set of aggregated performance indicators to compare players with respect to. to their contribution to the success of their team.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 16726-16741 ◽  
Author(s):  
Jiancai Song ◽  
Guixiang Xue ◽  
Xuhua Pan ◽  
Yunpeng Ma ◽  
Han Li

Sign in / Sign up

Export Citation Format

Share Document