Narrowband transmission quality in presence of modified IEEE 802.15.4a UWB signal

Author(s):  
J. Sadowski ◽  
R. Katulski
2018 ◽  
Vol 6 (3) ◽  
pp. 213-221
Author(s):  
Soo-Hwan Lee ◽  
You-Ho Kim ◽  
Sang-ahm Kim ◽  
Hyun-Ju Hwang ◽  
Yong-Woon Choi

Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang V. Nguyen

Objective: In this paper, Decode-and-Forward (DF) mode is deployed in the Relay Selection (RS) scheme to provide better performance in cooperative downlink Non-orthogonal Multiple Access (NOMA) networks. In particular, evaluation regarding the impact of the number of multiple relays on outage performance is presented. Methods: As main parameter affecting cooperative NOMA performance, we consider the scenario of the fixed power allocations and the varying number of relays. In addition, the expressions of outage probabilities are the main metric to examine separated NOMA users. By matching related results between simulation and analytical methods, the exactness of derived formula can be verified. Results: The intuitive main results show that in such cooperative NOMA networks, the higher the number of relays equipped, the better the system performance can be achieved. Conclusion: DF mode is confirmed as a reasonable selection scheme to improve the transmission quality in NOMA. In future work, we will introduce new relay selections to achieve improved performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Morichetti ◽  
Maziyar Milanizadeh ◽  
Matteo Petrini ◽  
Francesco Zanetto ◽  
Giorgio Ferrari ◽  
...  

AbstractFlexible optical networks require reconfigurable devices with operation on a wavelength range of several tens of nanometers, hitless tuneability (i.e. transparency to other channels during reconfiguration), and polarization independence. All these requirements have not been achieved yet in a single photonic integrated device and this is the reason why the potential of integrated photonics is still largely unexploited in the nodes of optical communication networks. Here we report on a fully-reconfigurable add-drop silicon photonic filter, which can be tuned well beyond the extended C-band (almost 100 nm) in a complete hitless (>35 dB channel isolation) and polarization transparent (1.2 dB polarization dependent loss) way. This achievement is the result of blended strategies applied to the design, calibration, tuning and control of the device. Transmission quality assessment on dual polarization 100 Gbit/s (QPSK) and 200 Gbit/s (16-QAM) signals demonstrates the suitability for dynamic bandwidth allocation in core networks, backhaul networks, intra- and inter-datacenter interconnects.


Author(s):  
Marcel Muller ◽  
Julian Lategahn ◽  
Lars Telle ◽  
Christof Rohrig
Keyword(s):  

2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Aleksandra Panajotovic ◽  
Daniela Milovic ◽  
Anjan Biswas ◽  
Essaid Zerrad

The transmission speed of optical network strongly depends on the impact of higher order dispersion. In presence of coherent crosstalk, which cannot be otherwise controlled by optical filtering, the impact of higher order dispersions becomes more pronounced. In this paper, the general expressions, that describe pulse deformation due to second- and fourth-order dispersions in a single-mode fiber, are given. The responses for such even-order dispersions, in presence of coherent crosstalk, are characterized by waveforms with long trailing edges. The transmission quality of optical pulses, due to both individual and combined influence of second- and fourth-order dispersions, is studied in this paper. Finally, the pulse shape and eye diagrams are obtained.


Sign in / Sign up

Export Citation Format

Share Document