The Development of A Real-Time Hardware-in-the-Loop Test Bench for Hybrid Electric Vehicles Based on Multi-Thread Technology

Author(s):  
Hu Zhong ◽  
Guoqiang Ao ◽  
Jiaxi Qiang ◽  
Lin Yang ◽  
Bin Zhuo
2020 ◽  
Vol 10 (12) ◽  
pp. 4253 ◽  
Author(s):  
Majid Vafaeipour ◽  
Mohamed El Baghdadi ◽  
Florian Verbelen ◽  
Peter Sergeant ◽  
Joeri Van Mierlo ◽  
...  

The energy management strategy (EMS) or power management strategy (PMS) unit is the core of power sharing control in the hybridization of automotive drivetrains in hybrid electric vehicles (HEVs). Once a new topology and its corresponding EMS are virtually designed, they require undertaking different stages of experimental verifications toward guaranteeing their real-world applicability. The present paper focuses on a new and less-extensively studied topology of such vehicles, HEVs equipped with an electrical variable transmission (EVT) and assessed the controllability validation through hardware-in-the-loop (HiL) implementations versus model-in-the-loop (MiL) simulations. To this end, first, the corresponding modeling of the vehicle components in the presence of optimized control strategies were performed to obtain the MiL simulation results. Subsequently, an innovative versatile HiL test bench including real prototyped components of the topology was introduced and the corresponding experimental implementations were performed. The results obtained from the MiL and HiL examinations were analyzed and statistically compared for a full input driving cycle. The verification results indicate robust and accurate actuation of the components using the applied EMSs under real-time test conditions.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Author(s):  
Dario Solis ◽  
Chris Schwarz

Abstract In recent years technology development for the design of electric and hybrid-electric vehicle systems has reached a peak, due to ever increasing restrictions on fuel economy and reduced vehicle emissions. An international race among car manufacturers to bring production hybrid-electric vehicles to market has generated a great deal of interest in the scientific community. The design of these systems requires development of new simulation and optimization tools. In this paper, a description of a real-time numerical environment for Virtual Proving Grounds studies for hybrid-electric vehicles is presented. Within this environment, vehicle models are developed using a recursive multibody dynamics formulation that results in a set of Differential-Algebraic Equations (DAE), and vehicle subsystem models are created using Ordinary Differential Equations (ODE). Based on engineering knowledge of vehicle systems, two time scales are identified. The first time scale, referred to as slow time scale, contains generalized coordinates describing the mechanical vehicle system that includs the chassis, steering rack, and suspension assemblies. The second time scale, referred to as fast time scale, contains the hybrid-electric powertrain components and vehicle tires. Multirate techniques to integrate the combined set of DAE and ODE in two time scales are used to obtain computational gains that will allow solution of the system’s governing equations for state derivatives, and efficient numerical integration in real time.


Sign in / Sign up

Export Citation Format

Share Document