Development of a low-cost, adaptive, clinician-friendly virtual rehabilitation system

Author(s):  
Meghan E. Huber ◽  
Miriam Leeser ◽  
Dagmar Sternad
Medicine ◽  
2018 ◽  
Vol 97 (25) ◽  
pp. e11173 ◽  
Author(s):  
Won-Seok Kim ◽  
Sungmin Cho ◽  
Seo Hyun Park ◽  
Ji-Young Lee ◽  
SuYeon Kwon ◽  
...  

Author(s):  
Manuel A. León ◽  
Paul A. Romero ◽  
Washington X. Quevedo ◽  
Oscar B. Arteaga ◽  
Cochise Terán ◽  
...  

Author(s):  
Kalaiarasi Arumugam ◽  
L.Ashok Kumar

Today, brain attack disorders are one of the most life-threatening areas in the medical era, which mankind is facing nowadays. Globally, more than 10,000,000 people are subjected to brain attack disorders like hemiplegia and tremor, every year, where two-thirds of them survive. Among the survival community, more than 80 per cent of them are subjected to long-term impairment of their upper extremity. In order to treat the impairment, the survival group is subjected to medications and rehabilitation in order to improve their daily living. But the facilities are very limited in fast-developing countries like India when compared to western standards. The rehabilitation given corresponding with medications during the treatment period in hospitals does not give a complete recovery from disability. People from rural background could not meet their rehabilitation requirements even in the hospital during treatment and also when they are discharged to home after treatment from hospitals due to financial constraints and reachability. In order to motivate the survival group to fulfill their daily living and improve their lifestyle, this paper is focused on intelligent home-based rehabilitation system at low cost, reliability, and affordability. One major movement disorder namely Upper Arm Hemiplegia was taken into account and visited few major hospitals around Coimbatore and Chennai for literature and case study. The facilities available in various hospitals and their drawbacks were analyzed.Acupuncture & Electro-therapeutics Research E-pubBased on the studies conducted at hospitals and taking advice from therapists, an innovative low-cost home-based rehabilitation device using Electro-Hydraulic systems has been developed to support patients who were used to impaired living even after treatments. To support Upper Arm Hemiplegia patients, the devices which were developed and experimented to hold different functionalities are discussed in this paper.


2019 ◽  
Vol 8 (6) ◽  
pp. 432-438
Author(s):  
Gerard G. Fluet ◽  
Qinyin Qiu ◽  
Jigna Patel ◽  
Amanda Cronce ◽  
Alma S. Merians ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Xikai Tu ◽  
Hualin Han ◽  
Jian Huang ◽  
Jian Li ◽  
Chen Su ◽  
...  

The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated by pneumatic artificial muscles (PAMs). In order to expand the useful range of RUPERT especially for patients with flaccid paralysis, functional electrical stimulation (FES) is taken to activate paralyzed arm muscles. As both the exoskeleton robot driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, iterative learning control (ILC) is studied and is taken to control this newly designed hybrid rehabilitation system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG) technique, the subject’s active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES arrays to realize active reach-to-grasp trainings, which was verified through experiments.


Author(s):  
Tomoya Tamei ◽  
Yasuyuki Orito ◽  
Hiroyuki Funaya ◽  
Kazushi Ikeda ◽  
Yohei Okada ◽  
...  

Low-cost, compact, and accurate systems for in-home rehabilitation are needed in aging, aged, and hyper-aged groups. In this study, we developed an in-home rehabilitation system for patients with balance disorders by providing visual feedback of postural information in real-time. Our system measures the user's whole body motion and the center of pressure (COP) using a Kinect and Wii Balance Board (WBB). The accuracy of body motion for estimating the anterior folding and lateral bending angles was validated experimentally by comparing the estimates with the angles given by an optical motion capture system. Additional experiments showed that the COP has a small correlation coefficient with the angles, suggesting that WBB is necessary for measuring the COP.


2020 ◽  
Vol 11 (2) ◽  
pp. 357-369
Author(s):  
Heba Amin ◽  
Samy F. M. Assal ◽  
Hiroyasu Iwata

Abstract. The increasing number of patients with hand disabilities after strokes or peripheral nerve injuries necessitates the continuous development of rehabilitation system devices to accelerate muscle recovery and to help patients regain the motor functions of their hands. This paper introduces the design of a hand rehabilitation system for patients who have a solitary impairment of their hand extension. The system was designed to be portable, simple, and cheap. Using a system based on a cable-driven mechanism instead of traditional rigid links reduces the degrees of freedom of the finger to one. The dielectric elastomer actuator was designed and fabricated as a smart actuator for the system, which supports the low cost of the system. A kinematic analysis of the cable-driven mechanism has been done. Parameters of the actuator were optimized to reach the required output. In order to characterize the performance of the actuator, a uniaxial tension test, isotonic test, and isometric test have been implemented.


Sign in / Sign up

Export Citation Format

Share Document