Acquisition Technology for the Third Beidou Satellite Navigation Signal with Low Signal-to-Noise Ratio and High Dynamic

Author(s):  
Yong Qin ◽  
Yucheng Zhang ◽  
Jianxin Guo ◽  
Bo Guo
2009 ◽  
Author(s):  
Leo H. C. Braga ◽  
Suzana Domingues ◽  
José G. Gomes ◽  
Antonio C. Mesquita

2013 ◽  
Vol 7 (16) ◽  
pp. 1818-1824
Author(s):  
Zhang Ruyuan ◽  
Dai Xiaojie ◽  
Zhan Yafeng ◽  
Lu Jianhua ◽  
Pei Yukui

1990 ◽  
Vol 2 (1) ◽  
pp. 85-93 ◽  
Author(s):  
David Willshaw ◽  
Peter Dayan

A recent article (Stanton and Sejnowski 1989) on long-term synaptic depression in the hippocampus has reopened the issue of the computational efficiency of particular synaptic learning rules (Hebb 1949; Palm 1988a; Morris and Willshaw 1989) — homosynaptic versus heterosynaptic and monotonic versus nonmonotonic changes in synaptic efficacy. We have addressed these questions by calculating and maximizing the signal-to-noise ratio, a measure of the potential fidelity of recall, in a class of associative matrix memories. Up to a multiplicative constant, there are three optimal rules, each providing for synaptic depression such that positive and negative changes in synaptic efficacy balance out. For one rule, which is found to be the Stent-Singer rule (Stent 1973; Rauschecker and Singer 1979), the depression is purely heterosynaptic; for another (Stanton and Sejnowski 1989), the depression is purely homosynaptic; for the third, which is a generalization of the first two, and has a higher signal-to-noise ratio, it is both heterosynaptic and homosynaptic. The third rule takes the form of a covariance rule (Sejnowski 1977a,b) and includes, as a special case, the prescription due to Hopfield (1982) and others (Willshaw 1971; Kohonen 1972).


2014 ◽  
Vol 912-914 ◽  
pp. 1098-1102
Author(s):  
Rui Zhao ◽  
Yan Wen Wang ◽  
Zhi Jie Wang

A new design of P-code Direct Acquisition Module based on segmented coherent accumulate at frequency field is provided in this article. Firstly, the implementation of P code acquisition system is given. Subsequently, according to specific application environment navigation terminal, the expressions of capture system detection probability and mean acquisition time are deduced. Research has shown that this P-code direct acquisition module can be adapted to a low signal to noise ratio high dynamic environments.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


Sign in / Sign up

Export Citation Format

Share Document