A signal-to-noise ratio comparison of high dynamic range CMOS image sensors

2009 ◽  
Author(s):  
Leo H. C. Braga ◽  
Suzana Domingues ◽  
José G. Gomes ◽  
Antonio C. Mesquita
2021 ◽  
Vol 7 (4) ◽  
pp. 104-110
Author(s):  
Mariia Globa ◽  
Sergey Lesovoi

The paper describes application of standard gain calibration using redundancy for a 48-antenna prototype of Siberian Radioheliograph. Traditionally, for calibration, the visibilities were measured only between adjacent antennas since they have the highest signal-to-noise ratio and are sufficient for phase calibration. We have shown that this limited set of visibilities did not allow using the antenna array redundancy potential and obtaining images with a high dynamic range on a permanent basis. Images without amplitude calibration contain many artifacts and require special care when analyzed. The inclusion of visibility measurement between antennas with a double step made it possible to significantly increase the accuracy of solving the system of equations for amplitudes. Images constructed using both phase and amplitude calibrations do not have visible artifacts and are more reliable.


2018 ◽  
Vol 65 (7) ◽  
pp. 2932-2938 ◽  
Author(s):  
Shuang Cui ◽  
Zhaohan Li ◽  
Chao Wang ◽  
Xiaotian Yang ◽  
Xinyang Wang ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. 703-718 ◽  
Author(s):  
Lewis H Weinberger ◽  
Girish Kulkarni ◽  
Martin G Haehnelt

ABSTRACT We model the 21-cm signal and Lyman-α emitter (LAE) population evolution during the epoch of reionization in order to predict the 21-cm LAE cross-power spectrum. We employ high-dynamic-range simulations of the intergalactic medium to create models that are consistent with constraints from the cosmic microwave background, Lyman-α forest, and LAE population statistics. Using these models we consider the evolution of the cross-power spectrum for a selection of realistic reionization histories and predict the sensitivity of current and upcoming surveys to measuring this signal. We find that the imprint of a delayed end to reionization can be observed by future surveys, and that strong constraints can be placed on the progression of reionization as late as z = 5.7 using a Subaru–SKA survey. We make predictions for the signal-to-noise ratios achievable by combinations of Subaru/PFS (Prime Focus Spectrograph) with the MWA, LOFAR, HERA, and SKA interferometers for an integration time of 1000 h. We find that a Subaru–SKA survey could measure the cross-power spectrum for a late reionization at z = 6.6 with a total signal-to-noise ratio greater than 5, making it possible to constrain both the timing and bubble size at the end of reionization. Furthermore, we find that expanding the current Subaru/PFS survey area and depth by a factor of three would double the total signal-to-noise ratio.


2020 ◽  
Vol 2 (1) ◽  
pp. 79
Author(s):  
Fernando de Souza Campos ◽  
Bruno Albuquerque de Castro ◽  
Jacobus W. Swart

Several CMOS imager sensors were proposed to obtain high dynamic range imager (>100 dB). However, as drawback these imagers implement a large number of transistors per pixel resulting in a low fill factor, high power consumption and high complexity CMOS image sensors. In this work, a new operation mode for 3 T CMOS image sensors is presented for high dynamic range (HDR) applications. The operation mode consists of biasing the conventional reset transistor as active load to photodiode generating a reference current. The output voltage achieves a steady state when the photocurrent becomes equal to the reference current, similar to the inverter operation in the transition region. At a specific bias voltage, the output swings from o to Vdd in a small light intensity range; however, high dynamic range is achieve using multiple readout at different bias voltage. For high dynamic range operation different values of bias voltage can be applied from each one, and the signal can be captured to compose a high dynamic range image. Compared to other high dynamic range architectures this proposed CMOS image pixel show as advantage high fill-factor (3 T) and lower complexity. Moreover, as the CMOS pixel does not operate in integration mode, de readout can be performed at higher speed. A prototype was fabricated at 3.3 V 0.35 µm CMOS technology. Experimental results are shown by applying five different control voltage from 0.65 to 1.2 V is possible to obtain a dynamic range of about 100 dB.


2004 ◽  
Vol 17 (2) ◽  
pp. 165-184 ◽  
Author(s):  
Johannes Huber ◽  
Bernd Matschkal

A new method for efficient digitizing analog signals while preserving the original waveform as close as possible with respect to the relative quantization error is presented. Logarithmic quantization is applied to short vectors of samples represented in sphere coordinates. The resulting advantages, i.e. a constant Signal-to-Noise Ratio over a very high dynamic range at a small loss with respect to rate-distortion theory are discussed. In order to increase the Signal-to-Noise Ratio (SNR) by exploitation of correlations within the source signal, a method of combining differential pulse code modulation (DPCM) with spherical logarithmic quantization is presented. The resulting technique achieves an efficient digital representation of waveforms with a high long term as well as segmental SNR at an extreme low delay of the signal.


Sign in / Sign up

Export Citation Format

Share Document