Functional verification of complete sequential behaviors: A formal treatment of discrepancies between system-level and RTL descriptions

Author(s):  
Carlos Ivan Castro Marquez ◽  
Marius Strum ◽  
Wang Jiang Chau
Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 254
Author(s):  
Sarah Walsh ◽  
David Murphy ◽  
Maeve Doyle ◽  
Jack Reilly ◽  
Joseph Thompson ◽  
...  

The Educational Irish Research Satellite (EIRSAT-1) is a 2U CubeSat developed at University College Dublin. The project aims to build, test, launch, and operate Ireland’s first satellite and to perform in-orbit demonstrations of three novel payloads developed in-house. To reduce risk within the mission, the project employs a prototype model philosophy in which two models of the spacecraft exist: an engineering qualification model (EQM) and a flight model (FM). This paper presents the verification approach of the functional tests implemented for the EIRSAT-1 project. The activities of the FlatSat and system level full functional tests of the EQM are presented and the results obtained during the test campaigns are discussed. Four test anomalies were encountered during the full functional test campaign resulting in two minor redesigns, and subsequent reassembly, of the CubeSat. The functional test campaigns highlighted the importance of FlatSat level testing of CubeSats to ensure compatibility of all subsystems prior to assembly and of thorough documentation to diagnose any unexpected behaviour of the hardware efficiently. The functional verification of the EQM proved that the system conformed to its design, verifying 57 mission requirements, and is a crucial step towards the development of the EIRSAT-1 FM.


2021 ◽  
Vol 11 (1) ◽  
pp. 6719-6723
Author(s):  
H. Mestiri ◽  
I. Barraj ◽  
M. Machhout

The increasing complexity of the cryptographic modeling and security simulation of the Advanced Encryption Standard (AES) necessitate fast modeling and simulation security environment. The SystemC language is used in Electronic System Level (ESL) that allows cryptographic models to achieve high security and modeling simulation speed. Yet, the use of SystemC in the security simulation requires modifications of the original code which increases the modeling complexity. The Aspect-Oriented Programming (AOP) can be used in the cryptographic modeling and security simulations without any code modification. In this paper, a new AES SystemC model using the AOP technique is presented. A functional verification environment is proposed to test the functionality of the AES SystemC AOP model, the impact of AOP on simulation time, and the size of the executable files. The design of the AES model is developed with the weaving of all modules by AspectC++ which is an AOP language. The Simulation results show the efficiency of the proposed AES model and the uses of the AOP technique do not have a significant impact on simulation time or on the size of the executable file.


1998 ◽  
Author(s):  
Martin P. Charns ◽  
Victoria A. Parker ◽  
William H. Wubbenhorst
Keyword(s):  

2018 ◽  
Vol 4 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Ivan J. Raymond ◽  
Matthew Iasiello ◽  
Aaron Jarden ◽  
David Michael Kelly
Keyword(s):  

2007 ◽  
Vol 51 (1-2) ◽  
pp. 43
Author(s):  
Balázs Polgár ◽  
Endre Selényi
Keyword(s):  

1997 ◽  
Vol 473 ◽  
Author(s):  
J. A. Davis ◽  
J. D. Meindl

ABSTRACTOpportunities for Gigascale Integration (GSI) are governed by a hierarchy of physical limits. The levels of this hierarchy have been codified as: 1) fundamental, 2) material, 3) device, 4) circuit and 5) system. Many key limits at all levels of the hierarchy can be displayed in the power, P, versus delay, td, plane and the reciprocal length squared, L-2, versus response time, τ, plane. Power, P, is the average power transfer during a binary switching transition and delay, td, is the time required for the transition. Length, L, is the distance traversed by an interconnect that joins two nodes on a chip and response time, τ, characterizes the corresponding interconnect circuit. At the system level of the hierarchy, quantitative definition of both the P versus td and the L-2 versus τ displays requires an estimate of the complete stochastic wiring distribution of a chip.Based on Rent's Rule, a well known empirical relationship between the number of signal input/output terminals on a block of logic and the number of gate circuits with the block, a rigorous derivation of a new complete stochastic wire length distribution for an on-chip random logic network is described. This distribution is compared to actual data for modern microprocessors and to previously described distributions. A methodology for estimating the complete wire length distribution for future GSI products is proposed. The new distribution is then used to enhance the critical path model that determines the maximum clock frequency of a chip; to derive a preliminary power dissipation model for a random logic network; and, to define an optimal architecture of a multilevel interconnect network that minimizes overall chip size. In essence, a new complete stochastic wiring distribution provides a generic basis for maximizing the value obtained from a multilevel interconnect technology.


Sign in / Sign up

Export Citation Format

Share Document