Numerical computation of specific absorption rate and induced current for workers exposed to static magnetic fields of MRI scanners

Author(s):  
S. I. Farrag
Author(s):  
Mohsen Zaeimbashi ◽  
Mehdi Nasrollahpour ◽  
Adam Khalifa ◽  
Anthony Romano ◽  
Xianfeng Liang ◽  
...  

AbstractUltra-compact wireless implantable medical devices (IMDs) are in great demand for healthcare applications, in particular for neural recording and stimulation. Current implantable technologies based on miniaturized micro-coils suffer from low wireless power transfer efficiency (PTE) and are not always compliant with the specific absorption rate imposed by the Federal Communications Commission, particularly for deep brain implantation where field attenuation and tissue loss are significant. Moreover, current implantable devices are reliant on recordings of voltage or current. This has two major weaknesses: 1) the necessary direct contact between electrode and tissue degrades over time due to electrochemical fouling and tissue reactions, and 2) the necessity for differential recordings across space. Here, we report, for the first time, an ultra-compact dual-band smart nanoelectromechanical systems magnetoelectric (ME) antenna with a size of 250×174 μm2 that can efficiently perform wireless energy harvesting and sense ultra-small magnetic fields such as those arising from neural activities. The proposed smart ME antenna has a wireless PTE 1~2 orders of magnitude higher than any other reported miniaturized micro-coil, allowing the wireless IMDs to be compliant with the specific absorption rate (SAR) limit and to operate under safe exposure of radio frequency energy. Furthermore, the magnetic sensing capability of the proposed smart ME antenna, with a limit of detection of 300~500pT at > 200Hz, should allow the IMDs to record neural magnetic fields from the brain without requiring differential recording.


2015 ◽  
Vol E98.B (7) ◽  
pp. 1173-1181 ◽  
Author(s):  
Akihiro TATENO ◽  
Tomoaki NAGAOKA ◽  
Kazuyuki SAITO ◽  
Soichi WATANABE ◽  
Masaharu TAKAHASHI ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3500
Author(s):  
Marija Radmilović-Radjenović ◽  
Martin Sabo ◽  
Marta Prnova ◽  
Lukaš Šoltes ◽  
Branislav Radjenović

Knowledge of the frequency dependence of the dielectric properties of the lung tissues and temperature profiles are essential characteristics associated with the effective performance of microwave ablation. In microwave ablation, the electromagnetic wave propagates into the biological tissue, resulting in energy absorption and providing the destruction of cancer cells without damaging the healthy tissue. As a consequence of the respiratory movement of the lungs, however, the accurate prediction of the microwave ablation zone has become an exceptionally demanding task. For that purpose, numerical modeling remains a primordial tool for carrying out a parametric study, evaluating the importance of the inherent phenomena, and leading to better optimization of the medical procedure. This paper reports on simulation studies on the effect of the breathing process on power dissipation, temperature distribution, the fraction of damage, and the specific absorption rate during microwave ablation. The simulation results obtained from the relative permittivity and conductivity for inflated and deflated lungs are compared with those obtained regardless of respiration. It is shown that differences in the dielectric properties of inflated and deflated lungs significantly affect the time evolution of the temperature and its maximum value, the time, the fraction of damage, and the specific absorption rate. The fraction of damage determined from the degree of tissue injury reveals that the microwave ablation zone is significantly larger under dynamic physical parameters. At the end of expiration, the ablation lesion area is more concentrated around the tip and slot of the antenna, and the backward heating effect is smaller. The diffuse increase in temperature should reach a certain level to destroy cancer cells without damaging the surrounding tissue. The obtained results can be used as a guideline for determining the optimal conditions to improve the overall success of microwave ablation.


Sign in / Sign up

Export Citation Format

Share Document