Predictive current control method to reduce common-mode interference for three-phase induction motor

Author(s):  
Xiliang Chen ◽  
Wenjie Chen ◽  
Yaqiang Han ◽  
Yilin Sha ◽  
Heyuan Qi ◽  
...  
2017 ◽  
Vol 27 (02) ◽  
pp. 1850028 ◽  
Author(s):  
Eedara Aswani Kumar ◽  
Koritala Chandra Sekhar ◽  
Rayapudi Srinivasa Rao

This paper presents a reduced control set model predictive control (RCSMPC) method for three-phase T-type neutral-point-clamped (NPC) inverter. The whole control set (WCS) consists of all the 27 switching states of T-type NPC inverter. The reduced control set (RCS) with 19 switching states is formed from WCS by excluding the switching states with common mode voltage (CMV) value higher than one-sixth of input DC voltage [Formula: see text]. With RCS, single-objective model predictive current control method can restrict the CMV peak value to [Formula: see text]. To further reduce the CMV below this threshold, a cost function with the weighted sum of two control targets is formulated in the RCSMPC method. The two control targets of RCSMPC method are CMV mitigation and load current control. The weight for CMV is called bias factor. The RCSMPC method is computationally efficient, as the number of switching states is less than that of WCSMPC. To further reduce the computational burden, CMV values corresponding to all the switching states are calculated offline and stored in memory. Robustness of both the methods is investigated with parameter deviations at different bias factors and reference currents. The proposed method is validated using simulation and experimental results and compared with the existing methods.


2010 ◽  
Vol 4 (1) ◽  
pp. 26 ◽  
Author(s):  
R. Gregor ◽  
F. Barrero ◽  
S.L. Toral ◽  
M.J. Durán ◽  
M.R. Arahal ◽  
...  

Author(s):  
Anmar Kh. Ali ◽  
Riyadh G. Omar

In this, work the finite control set (FCS) model predictive direct current control strategy with constraints, is applied to drive three-phase induction motor (IM) using the well-known field-oriented control. As a modern algorithm approach of control, this kind of algorithm decides the suitable switching combination that brings the error between the desired command currents and the predicated currents, as low as possible, according to the process of optimization. The suggested algorithm simulates the constraints of maximum allowable current and the accepted deviation, between the desired command and actual currents. The new constraints produce an improvement in system performance, with the predefined error threshold. This can be applied by avoiding the switching combination that exceeds the limited values. The additional constraints are more suitable for loads that require minimum distortion in harmonic and offer protection from maximum allowable currents. This approach is valuable especially in electrical vehicle (EV) applications since its result offers more reliable system performance with low total harmonics distortion (THD), low motor torque ripple, and better speed tracking.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3389 ◽  
Author(s):  
Chivon Choeung ◽  
Meng Leang Kry ◽  
Young Il Lee

This paper presents a robust control technique for three-phase chargers under unbalanced grid conditions. The control method consists of inner-loop robust grid-current control and outer-loop proportional integral control for constant current (CC) and constant voltage (CV) control. A dual-current control for the inner-loop positive and negative sequence is employed to eliminate the unbalanced current caused by the grid so that a constant current and voltage can be provided to the batteries. The inner-loop robust controllers utilize state feedback with integral action in the dq-synchronous frame. A linear matrix inequality-based optimization scheme is used to determine stabilizing gains of the controllers to maximize the convergence rate to steady state in the presence of uncertainties. The uncertainties of the system are described as the potential variation range of the inductance and resistance in the L-filter.


2019 ◽  
Vol 42 (2) ◽  
pp. 244-258 ◽  
Author(s):  
Bilel Aichi ◽  
Mohamed Bourahla ◽  
Khedidja Kendouci ◽  
Benyounes Mazari

This work proposes a robust control scheme of a three-phase induction motor using a new Backstepping approach based on variable gains. Because of the saturation blocks that are essential to protect the control system, the use of conventional integral Backstepping could lead to a modest performance represented by overshooting and strong vibrations in transitional regimes that cause overcurrent. To develop an efficient and simple control algorithm, the variable gains propriety is used in the speed controller to offer a quick response without overshooting with good robustness against external disturbances. The same property has been introduced in current regulation by a different mean in order to develop a new solution to solve obstacles related to very low-speed operations. The asymptotic stability of the global control is proven by Lyapunov theory. The improvement of the new version compared with the classical one was verified by a brief comparative study based on simulation results. The proposed algorithm has been implemented in a dSPACE DS 1104 card, to analyze the real-time motor performance, and to test control sensitivity against parametric variations. The obtained results show a remarkable improvement of the new control concerning rapidity and stability of transient regimes, overtaking elimination and reduction of starting current, with a low algorithm sensitivity against parametric variations. We have also been able to confirm that the new current control method can guarantee optimal regulation in order to achieve a high-performance operation at very low-speed zones, in the presence of various internal and external disturbances.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Li Haixia ◽  
Lin Jican

In the present study, the current control method of the model predictive control is applied to the field-oriented control induction motor. The augmentation model of the motor is initially established based on the stator current equation, which performs the current predictive control and formulates the new cost function by means of tracking error. Then, the influence of parameter error on the current control stability in the prediction model is analysed, and the current static error is corrected according to the correlation between the input and feedback. Finally, a simple and effective three-vector control strategy is proposed. Moreover, three adjacent basic voltage vectors are utilized, and then six candidate voltage vectors are synthesized in each sector to replace eight basic voltage vectors in the conventional model predictive control (MPC). The obtained results show that synthesized vectors, which have arbitrary amplitude and direction, significantly expand the coverage of the system’s control set, reduce the torque and flux pulsation in the conventional MPC, and improve the steady-state performance of the system. Finally, the dSPACE platform is employed to validate the performed experiment. It is concluded that the proposed method can reduce the torque and flux pulse, perform the induction motor current control, and improve the steady-state performance of the system.


Sign in / Sign up

Export Citation Format

Share Document