Direct Duty Ratio Control of Buck DC-DC Converters Using Disturbance Observer Based Integral Sliding Mode Control

Author(s):  
Sanjeev Kumar Pandey ◽  
S. L. Patil ◽  
U. M. Chaskar ◽  
S. B. Phadke
2019 ◽  
Vol 16 (3) ◽  
pp. 172988141984412 ◽  
Author(s):  
Wei Yuan ◽  
Guoqin Gao

This article seeks to achieve high tracking performance of the hybrid automobile electro-coating conveying mechanism with disturbances and uncertainties. An integral sliding mode control scheme is first presented to eliminate the reaching phase in sliding mode control. Then, an adaptive integral sliding mode controller is designed without knowing the disturbance information. Finally, a composite strategy, referred to as nonlinear disturbance observer (NDO)-based adaptive integral sliding model control, is put forward to further reduce the switching gain. By compensating the lumped disturbances via a NDO, the switching gain is only required to be higher than upper bound of the disturbance estimation error which is much smaller than actual disturbance. The results of both numerical simulations and experiments show that the proposed approach has good control performance especially in reducing the switching gain and alleviating the chattering problem.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141667769 ◽  
Author(s):  
Dianwei Qian ◽  
Chengdong Li ◽  
Shiwen Tong ◽  
Lu Yu

This article proposes a control scheme for formation of maneuvers of a team of mobile robots. The control scheme integrates the integral sliding mode control method with the nonlinear disturbance observer technique. The leader–follower formation dynamics suffer from uncertainties originated from the individual robots. The uncertainties challenge the formation control of such robots. Assuming that the uncertainties are unknown but bounded, an nonlinear disturbance observer-based observer is utilized to approximate them. The observer outputs feed on an integral sliding mode control-based controller. The controller and observer are integrated into the control scheme to realize formation maneuvers despite uncertainties. The formation stability is analyzed by means of the Lyapunov’s theorem. In the sense of Lyapunov, not only the convergence of the approximation errors is guaranteed but also such a control scheme can asymptotically stabilize the formation system. Compared to the results by the sole integral sliding mode control, some simulations are presented to demonstrate the feasibility and performance of the control scheme.


Sign in / Sign up

Export Citation Format

Share Document