Direct duty ratio control of connected converter in DC microgrid

Author(s):  
Na Zhi ◽  
Haiming Yan ◽  
Hui Zhang ◽  
Weiliang Zhang
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Saman Toosi ◽  
Norhisam Misron ◽  
Tsuyoshi Hanamoto ◽  
Ishak Bin Aris ◽  
Mohd Amran Mohd Radzi ◽  
...  

This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation.


2012 ◽  
Vol 622-623 ◽  
pp. 1039-1047
Author(s):  
P. Venkata Sriram ◽  
Bhattacharya Swagnik

The Maximum Power Point Tracking (MPPT) is a very important function in a Solar Photovoltaic (SPV) system. While previous research has been focussed on optimizing the performance of the MPPT, there is further scope to improve upon the MPPT efficiency without compromising on the complexity of the MPPT technique in terms of the algorithm and hardware requirements. The research work presented in this paper aims to address this gap. The paper presents two novel MPPT schemes which are the proposed Perturb and Observe (P&O) and proposed Incremental Conductance (IC) methods based on two-step control and direct duty ratio perturbation. The proposed techniques are efficient, computationally less complex and hardware minimal than previous study in this field. For verification, simulation has been performed for extensive irradiation profiles of Standard Test Conditions (STC), rapidly changing and gradually changing insolation conditions which are representative of the boundary cases. Results of the proposed MPPT methods are compared with that of conventional MPPT methods. The results show that proposed MPPT schemes have excellent tracking efficiency and dynamic response with respect to previous research.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 493 ◽  
Author(s):  
Kumars Rouzbehi ◽  
Arash Miranian ◽  
Juan Manuel Escaño ◽  
Elyas Rakhshani ◽  
Negin Shariati ◽  
...  

This paper develops a data-driven strategy for identification and voltage control for DC-DC power converters. The proposed strategy does not require a pre-defined standard model of the power converters and only relies on power converter measurement data, including sampled output voltage and the duty ratio to identify a valid dynamic model for them over their operating regime. To derive the power converter model from the measurements, a local model network (LMN) is used, which is able to describe converter dynamics through some locally active linear sub-models, individually responsible for representing a particular operating regime of the power converters. Later, a local linear controller is established considering the identified LMN to generate the control signal (i.e., duty ratio) for the power converters. Simulation results for a stand-alone boost converter as well as a bidirectional converter in a test DC microgrid demonstrate merit and satisfactory performance of the proposed data-driven identification and control strategy. Moreover, comparisons to a conventional proportional-integral (PI) controllers demonstrate the merits of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document