High Torque Density Traction Motor Using Soft Magnetic Composites Material with Surface Ring-type Halbach-array PM Rotor Topology

Author(s):  
Sumeet Singh ◽  
Pragasen Pillay
2017 ◽  
Vol 54 (6) ◽  
pp. 366-387
Author(s):  
T. Schwark ◽  
M. Müller ◽  
Y. Mine ◽  
T. Kreuter ◽  
O. Kraft ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3639
Author(s):  
Rundong Huang ◽  
Chunhua Liu ◽  
Zaixin Song ◽  
Hang Zhao

Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple.


2012 ◽  
Vol 51 (5-6) ◽  
pp. 253-259 ◽  
Author(s):  
N. V. Boshitskaya ◽  
O. V. Vlasova ◽  
I. V. Uvarova ◽  
L. M. Appininskaya ◽  
O. I. Get’man

Author(s):  
Ling Xiao ◽  
Yanhua Sun ◽  
Chunhua Ding ◽  
Lihua Yang ◽  
Lie Yu

Soft magnetic composites (SMCs) can be described as soft magnetic powders covered by electrically insulating layers. In this work, iron powders with high purity and organic-silicon epoxy resin were chosen for good magnetic properties, thermal stability, and mechanical properties, respectively. The effect of amount of resin, different annealing temperatures on the microstructure, and performance of SMCs was investigated. Results show that organic-silicon epoxy resin has excellent properties as dielectric coating materials for coating iron powders and maximum heat-resistant temperature is about 400 ℃. According to magnetic properties and flexural strength analysis, the optimum annealing temperature of organic-silicon epoxy resin-coated composite is 200 ℃. Furthermore, the finite element analysis indicates that the strength of the whole composites is related to the adhesion of resin and iron and the strength of resin itself.


Sign in / Sign up

Export Citation Format

Share Document