A Novel Single Phase Modified Quasi-Z-Source Inverter Circuit Design and Analysis

Author(s):  
Mustafa Sacid Endiz ◽  
Ramazan Akkkaya
2017 ◽  
Vol 27 (06) ◽  
pp. 1750086 ◽  
Author(s):  
Hao Zhang ◽  
Honghui Ding ◽  
Chuanzhi Yi

This paper deals with the design-oriented analysis of slow-scale bifurcations in single phase DC–AC inverters. Since DC–AC inverter belongs to a class of nonautonomous piecewise systems with periodic equilibrium orbits, the original averaged model has to be translated into an equivalent autonomous one via a virtual rotating coordinate transformation in order to simplify the theoretical analysis. Based on the virtual equivalent model, eigenvalue sensitivity is used to estimate the effect of the important parameters on the system stability. Furthermore, theoretical analysis is performed to identify slow-scale bifurcation behaviors by judging in what way the eigenvalue loci of the Jacobian matrix move under the variation of some important parameters. In particular, the underlying mechanism of the slow-scale unstable phenomenon is uncovered and discussed thoroughly. In addition, some behavior boundaries are given in the parameter space, which are suitable for optimizing the circuit design. Finally, physical experiments are performed to verify the above theoretical results.


Author(s):  
Ranjeeta Patel ◽  
Anup Kumar Panda

Abstract This study presents a highly reliable 3-phase 4-wire, three dual-buck full-bridge shunt active power filter (3 DB FB APF) for distribution system. The proposed topology uses three single phase dual buck full bridge inverter sharing the same dc-link capacitor with high utilization of dc-bus voltage. The dual buck inverter circuit composed of one power switch and one diode leg instead of two power switches conventional inverter leg effectually eliminate the undesirable “shoot-through” phenomenon occurs in conventional inverter circuit. The fuzzy and adaptive hysteresis current controller based id-iq control strategy has been adopted to generate optimized switching frequency. For validation, the proposed topology is implemented in the OPAL-RT LAB using OP5142-Spartan 3 FPGA. The dynamic performance of the proposed 3 DB FB APF is assessed for sinusoidal, unbalanced and non-sinusoidal voltage source condition with unbalanced non-linear load that is when both three-phase and single-phase loads are present in the system. Besides, the results with proportional-integral (PI) controller are compared with FLC in terms of harmonic compensation. Furthermore, a comparison has been made between split capacitor dual buck half bridge active power filter (2C DB HB APF) and proposed 3 DB FB APF based on switch power rating.


2011 ◽  
Vol 204-210 ◽  
pp. 2071-2074
Author(s):  
Kao Feng Yarn ◽  
King Kung Wu ◽  
Kai Hsing Ma ◽  
Wen Chung Chang

A robust circuit design using matching technology to design the ultrasonic welding transducer driver with zero voltage switching is proposed. The feedback output voltage is used to control the oscillator frequency to achieve the self-tracking function. Experimental results exhibit that the Class-E inverter circuit can be effectively and stably applied on the high power ultrasonic welding system.


1980 ◽  
Vol 49 (6) ◽  
pp. 503-512
Author(s):  
S. M. SRIRAGHAVAN ◽  
B. D. PRADHAN ◽  
G. N. REVANKAR

Sign in / Sign up

Export Citation Format

Share Document