Efficient Compression and Preprocessing for Facilitating Large Scale Spatiotemporal Data Mining - A Case Study based on Automatic Identification System Data

Author(s):  
Hai-Yan Xu ◽  
Vasundhara Jayaraman ◽  
Xiuju Fu ◽  
Nasri Bin Othman ◽  
Wanbin Zhang ◽  
...  
2021 ◽  
pp. 1-22
Author(s):  
Lei Jinyu ◽  
Liu Lei ◽  
Chu Xiumin ◽  
He Wei ◽  
Liu Xinglong ◽  
...  

Abstract The ship safety domain plays a significant role in collision risk assessment. However, few studies take the practical considerations of implementing this method in the vicinity of bridge-waters into account. Therefore, historical automatic identification system data is utilised to construct and analyse ship domains considering ship–ship and ship–bridge collisions. A method for determining the closest boundary is proposed, and the boundary of the ship domain is fitted by the least squares method. The ship domains near bridge-waters are constructed as ellipse models, the characteristics of which are discussed. Novel fuzzy quaternion ship domain models are established respectively for inland ships and bridge piers, which would assist in the construction of a risk quantification model and the calculation of a grid ship collision index. A case study is carried out on the multi-bridge waterway of the Yangtze River in Wuhan, China. The results show that the size of the ship domain is highly correlated with the ship's speed and length, and analysis of collision risk can reflect the real situation near bridge-waters, which is helpful to demonstrate the application of the ship domain in quantifying the collision risk and to characterise the collision risk distribution near bridge-waters.


2020 ◽  
Vol 73 (6) ◽  
pp. 1237-1246
Author(s):  
Fan Zhou ◽  
Hua Chen ◽  
Peng Zhang

In maritime search and rescue (SAR), commanders need to understand the task execution efficiency of each SAR unit in real time to improve the overall efficiency of SAR efforts. This study proposes a method to evaluate the progress of maritime SAR missions using automatic identification system (AIS) data. First, the positioning accuracy of the AIS data was improved according to the relationship between position, speed, and course. Second, the historical track of the SAR ship was used to generate the SAR completion area based on a line buffer algorithm. The SAR completion area and SAR mission area were then superimposed to determine the overall progress of the SAR mission. The proposed method has been deployed within the SAR software on-board Haixun01 (China's largest and most advanced large-scale cruise rescue ship) since 2017 and has played an important role in devising SAR strategies and tracking mission progress, during several SAR actions.


2021 ◽  
pp. 253-269
Author(s):  
Claudia Ifrim ◽  
Manolis Wallace ◽  
Vassilis Poulopoulos ◽  
Andriana Mourti

Sign in / Sign up

Export Citation Format

Share Document