Second order time-frequency distribution in the study of time varying spectral content of EEG signals

Author(s):  
P. Zavarsky ◽  
N. Fujii ◽  
J. Magdolen
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2739 ◽  
Author(s):  
Rami Alazrai ◽  
Rasha Homoud ◽  
Hisham Alwanni ◽  
Mohammad Daoud

Accurate recognition and understating of human emotions is an essential skill that can improve the collaboration between humans and machines. In this vein, electroencephalogram (EEG)-based emotion recognition is considered an active research field with challenging issues regarding the analyses of the nonstationary EEG signals and the extraction of salient features that can be used to achieve accurate emotion recognition. In this paper, an EEG-based emotion recognition approach with a novel time-frequency feature extraction technique is presented. In particular, a quadratic time-frequency distribution (QTFD) is employed to construct a high resolution time-frequency representation of the EEG signals and capture the spectral variations of the EEG signals over time. To reduce the dimensionality of the constructed QTFD-based representation, a set of 13 time- and frequency-domain features is extended to the joint time-frequency-domain and employed to quantify the QTFD-based time-frequency representation of the EEG signals. Moreover, to describe different emotion classes, we have utilized the 2D arousal-valence plane to develop four emotion labeling schemes of the EEG signals, such that each emotion labeling scheme defines a set of emotion classes. The extracted time-frequency features are used to construct a set of subject-specific support vector machine classifiers to classify the EEG signals of each subject into the different emotion classes that are defined using each of the four emotion labeling schemes. The performance of the proposed approach is evaluated using a publicly available EEG dataset, namely the DEAPdataset. Moreover, we design three performance evaluation analyses, namely the channel-based analysis, feature-based analysis and neutral class exclusion analysis, to quantify the effects of utilizing different groups of EEG channels that cover various regions in the brain, reducing the dimensionality of the extracted time-frequency features and excluding the EEG signals that correspond to the neutral class, on the capability of the proposed approach to discriminate between different emotion classes. The results reported in the current study demonstrate the efficacy of the proposed QTFD-based approach in recognizing different emotion classes. In particular, the average classification accuracies obtained in differentiating between the various emotion classes defined using each of the four emotion labeling schemes are within the range of 73 . 8 % – 86 . 2 % . Moreover, the emotion classification accuracies achieved by our proposed approach are higher than the results reported in several existing state-of-the-art EEG-based emotion recognition studies.


2019 ◽  
Vol 9 (16) ◽  
pp. 3433 ◽  
Author(s):  
Rami Alazrai ◽  
Saifaldeen AL-Rawi ◽  
Hisham Alwanni ◽  
Mohammad I. Daoud

Detecting pain based on analyzing electroencephalography (EEG) signals can enhance the ability of caregivers to characterize and manage clinical pain. However, the subjective nature of pain and the nonstationarity of EEG signals increase the difficulty of pain detection using EEG signals analysis. In this work, we present an EEG-based pain detection approach that analyzes the EEG signals using a quadratic time-frequency distribution, namely the Choi–Williams distribution (CWD). The use of the CWD enables construction of a time-frequency representation (TFR) of the EEG signals to characterize the time-varying spectral components of the EEG signals. The TFR of the EEG signals is analyzed to extract 12 time-frequency features for pain detection. These features are used to train a support vector machine classifier to distinguish between EEG signals that are associated with the no-pain and pain classes. To evaluate the performance of our proposed approach, we have recorded EEG signals for 24 healthy subjects under tonic cold pain stimulus. Moreover, we have developed two performance evaluation procedures—channel- and feature-based evaluation procedures—to study the effect of the utilized EEG channels and time-frequency features on the accuracy of pain detection. The experimental results show that our proposed approach achieved an average classification accuracy of 89.24% in distinguishing between the no-pain and pain classes. In addition, the classification performance achieved using our proposed approach outperforms the classification results reported in several existing EEG-based pain detection approaches.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 138955-138972
Author(s):  
Rami Alazrai ◽  
Amal Al-Saqqaf ◽  
Feras Al-Hawari ◽  
Hisham Alwanni ◽  
Mohammad I. Daoud

Sign in / Sign up

Export Citation Format

Share Document