scholarly journals Tonic Cold Pain Detection Using Choi–Williams Time-Frequency Distribution Analysis of EEG Signals: A Feasibility Study

2019 ◽  
Vol 9 (16) ◽  
pp. 3433 ◽  
Author(s):  
Rami Alazrai ◽  
Saifaldeen AL-Rawi ◽  
Hisham Alwanni ◽  
Mohammad I. Daoud

Detecting pain based on analyzing electroencephalography (EEG) signals can enhance the ability of caregivers to characterize and manage clinical pain. However, the subjective nature of pain and the nonstationarity of EEG signals increase the difficulty of pain detection using EEG signals analysis. In this work, we present an EEG-based pain detection approach that analyzes the EEG signals using a quadratic time-frequency distribution, namely the Choi–Williams distribution (CWD). The use of the CWD enables construction of a time-frequency representation (TFR) of the EEG signals to characterize the time-varying spectral components of the EEG signals. The TFR of the EEG signals is analyzed to extract 12 time-frequency features for pain detection. These features are used to train a support vector machine classifier to distinguish between EEG signals that are associated with the no-pain and pain classes. To evaluate the performance of our proposed approach, we have recorded EEG signals for 24 healthy subjects under tonic cold pain stimulus. Moreover, we have developed two performance evaluation procedures—channel- and feature-based evaluation procedures—to study the effect of the utilized EEG channels and time-frequency features on the accuracy of pain detection. The experimental results show that our proposed approach achieved an average classification accuracy of 89.24% in distinguishing between the no-pain and pain classes. In addition, the classification performance achieved using our proposed approach outperforms the classification results reported in several existing EEG-based pain detection approaches.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2739 ◽  
Author(s):  
Rami Alazrai ◽  
Rasha Homoud ◽  
Hisham Alwanni ◽  
Mohammad Daoud

Accurate recognition and understating of human emotions is an essential skill that can improve the collaboration between humans and machines. In this vein, electroencephalogram (EEG)-based emotion recognition is considered an active research field with challenging issues regarding the analyses of the nonstationary EEG signals and the extraction of salient features that can be used to achieve accurate emotion recognition. In this paper, an EEG-based emotion recognition approach with a novel time-frequency feature extraction technique is presented. In particular, a quadratic time-frequency distribution (QTFD) is employed to construct a high resolution time-frequency representation of the EEG signals and capture the spectral variations of the EEG signals over time. To reduce the dimensionality of the constructed QTFD-based representation, a set of 13 time- and frequency-domain features is extended to the joint time-frequency-domain and employed to quantify the QTFD-based time-frequency representation of the EEG signals. Moreover, to describe different emotion classes, we have utilized the 2D arousal-valence plane to develop four emotion labeling schemes of the EEG signals, such that each emotion labeling scheme defines a set of emotion classes. The extracted time-frequency features are used to construct a set of subject-specific support vector machine classifiers to classify the EEG signals of each subject into the different emotion classes that are defined using each of the four emotion labeling schemes. The performance of the proposed approach is evaluated using a publicly available EEG dataset, namely the DEAPdataset. Moreover, we design three performance evaluation analyses, namely the channel-based analysis, feature-based analysis and neutral class exclusion analysis, to quantify the effects of utilizing different groups of EEG channels that cover various regions in the brain, reducing the dimensionality of the extracted time-frequency features and excluding the EEG signals that correspond to the neutral class, on the capability of the proposed approach to discriminate between different emotion classes. The results reported in the current study demonstrate the efficacy of the proposed QTFD-based approach in recognizing different emotion classes. In particular, the average classification accuracies obtained in differentiating between the various emotion classes defined using each of the four emotion labeling schemes are within the range of 73 . 8 % – 86 . 2 % . Moreover, the emotion classification accuracies achieved by our proposed approach are higher than the results reported in several existing state-of-the-art EEG-based emotion recognition studies.


Author(s):  
M.F. Habban ◽  
M. Manap ◽  
A.R. Abdullah ◽  
M.H. Jopri ◽  
T. Sutikno

This paper present an evaluation of linear time frequency distribution analysis for voltage source inverter system (VSI). Power electronic now are highly demand in industrial such as manufacturing, industrial process and semiconductor because of the reliability and sustainability. However, the phenomenon that happened in switch fault has become a critical issue in the development of advanced. This causes problems that occur study on fault switch at voltage source inverter (VSI) must be identified more closely so that problems like this can be prevented. The TFD which is STFT  and S-transform method are analyzed the switch fault of VSI.  To identify the VSI switches fault, the parameter of fault signal such as instantaneous of average current, RMS current, RMS fundamental current, total waveform distortion, total harmonic distortion and total non-harmonic distortion can be estimated from TFD. The analysis information are useful especially for industrial application in the process for identify the switch fault detection. Then the accuracy of both method, which mean STFT and S-transform are identified by the lowest value of mean absolute percentage error (MAPE). In addition, the S-transform gives a better accuracy compare with STFT and it can be implement for fault detection system.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Jiexiao Yu ◽  
Kaihua Liu ◽  
Liang Zhang ◽  
Peng Luo

The second and the third sentences of the abstract are changed and the shorter abstract is given as follows. To recover the nonstationary signal in complicated noise environment without distortion, a novel general design of fractional filter is proposed and applied to eliminate the Wigner cross-term. A time-frequency binary image is obtained from the time-frequency distribution of the observed signal and the optimal separating lines are determined by the support vector machine (SVM) classifier where the image boundary extraction algorithms are used to construct the training set of SVM. After that, the parameters and transfer function of filter can be determined by the parameters of the separating lines directly in the case of linear separability or line segments after the piecewise linear fitting of the separating curves in the case of nonlinear separability. Without any prior knowledge of signal and noise, this method can meet the reliability and universality simultaneously for filter design and realize the global optimization of filter parameters by machine learning even in the case of strong coupling between signal and noise. Furthermore, it could completely eliminate the cross-term in Wigner-Ville distribution (WVD) and the time-frequency distribution we get in the end has high resolution and good readability even when autoterms and cross-terms overlap. Simulation results verified the efficiency of this method.


Sign in / Sign up

Export Citation Format

Share Document