Depolarization diffusion during weak suprathreshold stimulation of cardiac tissue

Author(s):  
V. Nikolski ◽  
A. Sambelashvili ◽  
I.R. Efimov
1996 ◽  
Vol 270 (6) ◽  
pp. C1687-C1694 ◽  
Author(s):  
A. A. Grace ◽  
J. C. Metcalfe ◽  
P. L. Weissberg ◽  
H. W. Bethell ◽  
J. I. Vandenberg

The Na+/H+ antiport and Na(+)-HCO3- coinflux carrier contribute to recovery from intracellular acidosis in cardiac tissue. The effects of angiotensin II (10(-12)-10(-6) M) on H+ fluxes after intracellular acid loading and during reperfusion after myocardial ischemia have been investigated in the isovolumic, Langendorff-perfused ferret heart. Intracellular pH (pHi) was estimated using 31P nuclear magnetic resonance (NMR) spectroscopy from the chemical shift of intracellular deoxyglucose-6-phosphate or inorganic phosphate. Angiotensin II produced concentration-dependent stimulation (maximum at 10(-6) M: 67%) of 5-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na(+)-dependent of H+ efflux consistent with stimulation of the Na+/H+ antiport. Half-maximal stimulation of H+ efflux occurred at approximately 10(-9) M, which is close to the dissociation constant of the cardiac angiotensin AT1 receptor. Stimulation via this receptor was confirmed with the nonpeptide AT1 receptor blocker, GR-117289. Angiotensin II had less pronounced effects on HCO3(-)-dependent pHi recovery after acid loading with no effect on pHi recovery after intracellular alkalosis. During reperfusion, angiotensin II significantly increased H+ extrusion but impaired contractile recovery. The results support the hypothesis that angiotensin II facilitates H+ extrusion in the heart. This may help maintain physiological homeostasis, but the hypothesized obligated Na+ influx could exacerbate cellular dysfunction during reperfusion.


2001 ◽  
Vol 79 (8) ◽  
pp. 730-735 ◽  
Author(s):  
Michihiro Yoshimura ◽  
Hirofumi Yasue ◽  
Hisao Ogawa

Plasma levels of ANP and BNP increase in accordance with the severity of the heart failure. In severe cases, the amount of BNP secreted surpasses that of ANP. The main secretion site of BNP is the ventricles, and that of ANP is the atria. However, ANP is also secreted from the ventricles as heart failure advances, and thus the ventricles are important sites for both BNP and ANP. It is well known that myocardial stretch is a key factor in the stimulation of the secretion of ANP and BNP, although neurohumoral factors also play a role in the secretion mechanism. The major physiological effects of ANP and BNP are vasodilation, natriuresis, and inhibition of the renin-angiotensin-aldosterone (RAA) and the sympathetic nervous systems; all of which are supposed to suppress the progression of heart failure. The inhibitory action of ANP and BNP on the RAA system has been considered to be an extra-cardiac effect. We recently reported the activation of an angiotensin-converting enzyme and aldosterone production in failing human hearts. ANP and BNP, however, would inhibit aldosterone production, not only in the adrenal cortex but also in cardiac tissue. ANP, and especially BNP, are useful markers of the heart's status during treatment for heart failure. The infusion of synthetic ANP (hANP) or BNP (Nesiritide®) is effective in the treatment of acute heart failure. In Japan, BNP occupies an important position in the diagnosis of chronic heart failure, as ANP does in the treatment of acute heart failure.Key words: natriuretic peptide, heart failure, myocardial infarction, cardiomyopathy, aldosterone.


1998 ◽  
Vol 34 (6) ◽  
pp. 870-878
Author(s):  
G. Dzemida ◽  
R. Veteikis ◽  
A. Krishchyukaitis

2021 ◽  
Author(s):  
Christianne Chua ◽  
Julie Han ◽  
Weizhen Li ◽  
Wei Liu ◽  
Emilia Entcheva

AbstractOptogenetic methods for pacing of cardiac tissue can be realized by direct genetic modification of the cardiomyocytes to express light-sensitive actuators, such as channelrhodopsin-2, ChR2, or by introduction of light-sensitized non-myocytes that couple to the cardiac cells and yield responsiveness to optical pacing. In this study, we engineer three-dimensional “spark cells” spheroids, composed of ChR2-expressing human embryonic kidney cells, and characterize their morphology as function of cell density and time. These “spark-cell” spheroids are then deployed to demonstrate site-specific optical pacing of human stem-cell-derived cardiomyocytes (hiPSC-CMs) in 96-well format using non-localized light application and all-optical electrophysiology. We show that the spheroids can be handled using liquid pipetting and can confer optical responsiveness of cardiac tissue earlier than direct viral or liposomal genetic modification of the cardiomyocytes, with 24% providing reliable stimulation of the iPSC-CMs within 6 hours and >80% within 24 hours. Our results demonstrate a scalable, cost-effective method to achieve contactless optical stimulation of cardiac cell constructs that can be integrated in a robotics-amenable workflow for high-throughput drug testing.GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document