Analysis The Effect of Inlet Duct and Transition Zone Angle Variations on Flow Characteristics and Heat Transfer on Vertical Type Heat Recovery Steam Generator

Author(s):  
Ikhsan Mahardhika Utama ◽  
Fifi Hesty ◽  
Rif'ah Amalia ◽  
Setyo Nugroho
2002 ◽  
Vol 124 (3) ◽  
pp. 496-502 ◽  
Author(s):  
B. E. Lee ◽  
S. B. Kwon ◽  
C. S. Lee

Computational and experimental studies are performed to investigate the effect of swirl flow of gas turbine exhaust gas (GTEG) in an inlet duct of a heat recovery steam generator (HRSG). A supplemental-fired HRSG is chosen as the model studied because the uniformity of the GTEG at the inlet plane of the duct burner is essential in such applications. Both velocity and oxygen distributions are investigated at the inlet plane of the duct burner installed in the middle of the HRSG transition duct. Two important parameters, the swirl angle of GTEG and the momentum ratio of additional air to GTEG, are chosen for the investigation of mixing between the two streams. It has been found that a flow correction device (FCD) is essential to provide a uniform gas flow distribution at the inlet plane of the duct burner.


2013 ◽  
Vol 845 ◽  
pp. 596-603
Author(s):  
Mesfin G. Zewge ◽  
T.A. Lemma ◽  
A.A. Ibrahim ◽  
D. Sujan

In a cogeneration or combined heat and power plant, a heat recovery steam generator (HRSG) helps achieve overall thermal efficiency as high as 80%. The purpose of this study is to model and simulate the HRSG given partial design point data. The pinch and approach temperatures are optimized within generally accepted range. In order to satisfy the energy conservation equation, tuning parameters are used for the overall heat transfer coefficients corresponding to the evaporator and economizer. For the off-design simulation, the values of pinch and approach temperatures are adjusted until the modeling error is within a set limit. The effect of mass flow rate on the heat transfer coefficient is accounted for & by employing empirical relations. A 12 Ton/hr natural circulation HRSG was considered as a case study. The validation test on inlet temperatures of the exhaust gas and feed water to the economizer demonstrated relative percentage errors of 0.4246% and 1.8776%, respectively. The model can be used for fault detection and diagnostic system design, performance optimization, and environmental load assessment.


Sign in / Sign up

Export Citation Format

Share Document