On the Effect of Swirl Flow of Gas Turbine Exhaust Gas in an Inlet Duct of Heat Recovery Steam Generator

2002 ◽  
Vol 124 (3) ◽  
pp. 496-502 ◽  
Author(s):  
B. E. Lee ◽  
S. B. Kwon ◽  
C. S. Lee

Computational and experimental studies are performed to investigate the effect of swirl flow of gas turbine exhaust gas (GTEG) in an inlet duct of a heat recovery steam generator (HRSG). A supplemental-fired HRSG is chosen as the model studied because the uniformity of the GTEG at the inlet plane of the duct burner is essential in such applications. Both velocity and oxygen distributions are investigated at the inlet plane of the duct burner installed in the middle of the HRSG transition duct. Two important parameters, the swirl angle of GTEG and the momentum ratio of additional air to GTEG, are chosen for the investigation of mixing between the two streams. It has been found that a flow correction device (FCD) is essential to provide a uniform gas flow distribution at the inlet plane of the duct burner.

Author(s):  
Akber Pasha

In recent years the combined cycle has become a very attractive power plant arrangement because of its high cycle efficiency, short order-to-on-line time and flexibility in the sizing when compared to conventional steam power plants. However, optimization of the cycle and selection of combined cycle equipment has become more complex because the three major components, Gas Turbine, Heat Recovery Steam Generator and Steam Turbine, are often designed and built by different manufacturers. Heat Recovery Steam Generators are classified into two major categories — 1) Natural Circulation and 2) Forced Circulation. Both circulation designs have certain advantages, disadvantages and limitations. This paper analyzes various factors including; availability, start-up, gas turbine exhaust conditions, reliability, space requirements, etc., which are affected by the type of circulation and which in turn affect the design, price and performance of the Heat Recovery Steam Generator. Modern trends around the world are discussed and conclusions are drawn as to the best type of circulation for a Heat Recovery Steam Generator for combined cycle application.


2010 ◽  
Vol 14 (3) ◽  
pp. 845-854 ◽  
Author(s):  
Ferenc Lezsovits ◽  
Sándor Könczöl ◽  
Krisztián Sztankó

A heat-recovery steam generator was erected after a gas-turbine with a duct burner into the district heat centre. After commissioning, the CO emissions were found to be above the acceptable level specified in the initial contract. The Department of Energy Engineering of the BME was asked for their expert contribution in solving the problem of reducing these CO emissions. This team investigated the factors that cause incomplete combustion: the flue-gas outlet of the gas-turbine has significant swirl and rotation, the diffuser in between the gas-turbine and heat-recovery steam generator is too short and has a large cone angle, the velocity of flue-gas entering the duct burner is greater than expected, and the outlet direction of the flammable mixture from the injector of the duct burner was not optimal. After reducing the flow swirl of flue-gas and modifying the nozzle of the duct burner as suggested by the Department of Energy Engineering of the BME, CO emissions have been reduced to an acceptable level. The method involves the application of CFD modeling and studying images of the flames which proved to be very informative.


Author(s):  
Akber Pasha

The design of a Heat Recovery Steam Generator behind a gas turbine depends upon various input parameters such as gas turbine exhaust flow, exhaust temperature, etc. Most of the input parameters are either measured with tolerances or calculated based on experimental correlations. The design of the heat recovery steam generator itself utilizes various correlations and empirical values. The errors or measurement tolerances in these variables affect the performance of the steam generator. This paper describes the various design parameters, the possible magnitude of errors in these parameters and the overall effect on the steam generator’s performance. By utilizing the information given in this paper, it is possible to develop a performance envelope based on the possible error margins of the input variables. The steam generator performance can be deemed acceptable if it is within this envelope.


2017 ◽  
Vol 79 (7-3) ◽  
Author(s):  
A. Ganjehkaviri ◽  
Mustafa Yusof ◽  
M. N. Mohd Jaafar

In this study, thermodynamic modeling and exergoeconomic assessment of a Combined Cycle Power Plant (CCPP) with a Duct Burner (DB) was performed. Obtaining an optimum condition for the performance of a CCPP, using a DB after gas turbine was investigated by various researchers. DB is installed between gas turbine cycle and Rankine cycle of a CCPP to connect the gas turbine outlet to the Heat Recovery Steam Generator (HRSG) in order to produce steam for bottoming cycle. To find the irreversibility effect in each component of the bottoming cycle, a comprehensive parametric study is performed. In this regard, the effect of DB fuel flow rate on cost efficiency and economic of the bottoming cycle are investigated. To obtain a reasonable result, all the design parameters are kept constant while the DB fuel flow rate is varied. The results indicate that by increasing DB fuel flow rate, the investment cost and the efficiency of CCPP are increased. T-S diagram reveals that by using a DB, higher pressures steam in heat recovery steam generator has higher temperature while the low pressure is decreased. In addition, the exergy of flow gases in heat recovery steam generator increases. So, the exergy efficiency of the whole cycle was increased to around 6 percent, while the cost of the plant reduced by one percent.


Author(s):  
Hun Cha ◽  
Yoo Seok Song ◽  
Kyu Jong Kim ◽  
Jung Rae Kim ◽  
Sung Min KIM

An inappropriate design of HRSG (Heat Recovery Steam Generator) may lead to mechanical problems including the fatigue failure caused by rapid load change such as operating trip, start-up or shut down. The performance of HRSG with dynamic analysis should be investigated in case of start-up or shutdown. In this study, dynamic analysis for the HRSG system was carried out by commercial software. The HRSG system was modeled with HP, IP, LP evaporator, duct burner, superheater, reheater and economizer. The main variables for the analysis were the temperature and mass flow rate from gas turbine and fuel flow rate of duct burner for given start-up (cold/warm/hot) and shutdown curve. The results showed that the exhaust gas condition of gas turbine and fuel flow rate of duct burner were main factors controlling the performance of HRSG such as flow rate and temperature of main steam from final superheater and pressure of HP drum. The time delay at the change of steam temperature between gas turbine exhaust gas and HP steam was within 2 minutes at any analysis cases.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Sign in / Sign up

Export Citation Format

Share Document