inlet duct
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 24)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sadham Usean R ◽  
Prasad B. V. S. S. S. ◽  
Milind Dhabade ◽  
Amit Kurvinkop ◽  
Vishnuvardhan Tatiparthi

Abstract In a typical air turbine starter (ATS) engine testing application, compressed air is supplied to the turbine by means of an inlet duct usually with a 90 degree bend and discharged from the turbine into the exhaust chimney through a combination of two duct passages. The primary duct is integral to the engine for connecting to the containment ring. The secondary duct is a transition piece for connecting to the exhaust chimney. As these ducts consume additional pressure and adversely affect the performance of the ATS under test. The design of pressure-efficient outlet ducts is therefore essential, and is the topic of present study. The aerodynamic performance of the overall passage depends on the (i) angle of bend, (ii) the shape of the connecting bolt, (iii) the outlet area and shape of the exhaust duct transiting between the bend and the chimney. Combinations of different angular bends, different shaped bolts and varying size of transition pieces are analyzed using the enterprise version of CFD tool, ANSYS. Three dimensional mesh independent simulations using k-epsilon turbulence model are carried out for a combined geometry of inlet duct, rotor-stator combination, outlet ducts together with the bolts. A combination of the duct passages that has resulted in lowest possible pressure drop is suggested as result of the study i.e. the 90 degree bend duct gives 9% pressure difference between inlet and outlet and this might slightly affect the efficiency of the air turbine stator, however the mass flow rate values remains similar to the stator inlet mass flow rate. Hence the 90 degree bend duct is suitable for the test rig. The static pressure loss and total pressure gain is about 0.04% and −0.004% respectively for baseline and aggressive duct of stator and rotor, hence the baseline duct profile is better than aggressive duct. Among different shapes of connecting bolt, the baseline geometry gives slightly lower efficiency of 85.6% when compared to all other models. But due to manufacturing feasibility the baseline geometry is preferred. Exhaust duct model 7 gives pressure drop as 0.062 bar twice the amount of pressure drop in model 6, but it does not affect the efficiency of air turbine starter. The shapes and sizes of the bend, bolts and the transition piece are recommended.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Can Luo ◽  
Shuaihao Lei ◽  
Chuan Wang ◽  
Li Cheng ◽  
Chenzhi Xia ◽  
...  

The intake grid is always installed technically to protect the impeller at the entrance of the waterjet propulsion device’s inlet duct affecting its performance. Therefore, this study discussed the complex features of the circular, rectangular, and streamlined intake grid. Consistent geometry size of the intake grid mentioned above is to be maintained to guarantee the identical flow capacity at the entrance of inlet duct. Using experimental and simulated method, the outcomes are drawn as below. Rather than the circular and rectangular intake grid, the streamlined intake grid can improve the hydraulic performance of the waterjet propulsion device. The numerical method is proved to be correct as the consistence of the hydraulic characteristic between the test and simulated results. The causes of hydraulic loss in the contraction segment and straight pipe segment are the intake grid and the inflow velocity, respectively; meanwhile, the loss in the belt pipe segment owes to the vortex, flow separation, and impact on the back. The intake grid has a positive effect on the depth of the inlet velocity profile, but a negative effect on the width of it. The intake grid installation results in thrust reduction, the progress of velocity-weighted average angle, and the regress of axial velocity uniformity. The performance of waterjet propulsion device is complex and evaluated by the hydraulic performance index (HPI), thrust performance index (TPI), and characteristic of flow pattern index (CFPI). Based on the three evaluation indexes, the streamlined scheme is raised to be the recommended scheme.


Author(s):  
Zonghan Sun ◽  
Jie Tian ◽  
Grzegorz Liskiewicz ◽  
Zhaohui Du ◽  
Hua Ouyang

Abstract A noise reduction method for axial flow fans using a short inlet duct is proposed. The pattern of noise reduction imposed by the short inlet duct on the axial flow cooling fan under variable working conditions was experimentally and numerically examined. A 2-cm inlet duct was found to reduce tonal noise. As the tip Mach number of the fan increased from 0.049 to 0.156, the reduction in the total average sound pressure level at 1 m from the fan increased from 0.8 dB(A) to 4.3 dB(A), and further achieved 4.8 dB(A) when a 1-cm inlet duct was used. The steady CFD showed that the inlet duct has little effect on the aerodynamic performance of the fan. The results of the unsteady calculation showed that the suction vortexes move upstream to weaken the interaction with the rotor blades, which significantly reduces the pulsating pressure on the blades. The SPL at the BPF contributed by the thrust force was calculated to reduce by 36 dB at a 135° observer angle, reflecting the rectification effect of the duct on the non-uniform inlet flow. The POD of the static pressure field on the blades verified that the main spatial mode is more uniformly distributed due to the duct, and energy owing to the rotor-inlet interaction decreases. A speed regulation strategy for the cooling fan with short inlet duct is proposed, which provides guidance for the application of this noise reduction method.


Author(s):  
Dhananjay Kumar

In generation, Most of the thermal power plant is installed ESP with Bag-house FF Filteration system. Electrostatic Precipitator (ESP) are well accepted and widely used for air pollution control due to reasonable collections efficiency, low pressure-drop, and low capital and operating costs. The performance of modern ESP’s would be expected to be better than 99.9% particulate removal efficiency while incurring less than 100 Pa pressure drop. The geometry of inlet duct has refined with guide vanes placed at several locations. An improvement of flow distribution in the duct through optimization can be achieved by modification of inlet duct. In this present work, CFD analysis of flow through the APH outlet to ESP inlet duct and ESP Outlet duct is performed by modification of duct , in order to reduce the pressure drop, reduce turbulence as well as achieve uniform distributions among the all streams and minimize erosion of duct walls caused due to high velocity. Reducing erosion of the duct walls results in the reduction of leakages in the ducts. Reduction of pressure drop across the duct saves the power consumption. The ESP inlet and ESP Outlet duct consists of two inlet and two outlets. The simulation studies involving the flow through the ESP inlet and outlet duct are performed using3-D Model development using Solid Works, ANSYS Design Modeler, Grid generation using ICEM CFD (HEXA) and Performing the simulation using ANSYS CFX using structured hexahedral mesh. The pathlines, velocity contours, pressure distributions for various cases involving without modification of duct. The ESP inlet duct and outlet duct modification shows lesser pressure drop with uniform distributions across the duct.


Author(s):  
Yuge Yao ◽  
Wenshi Huang ◽  
Yuxin Wu ◽  
Yang Zhang ◽  
Man Zhang ◽  
...  

2021 ◽  
Author(s):  
Zonghan Sun ◽  
Jie Tian ◽  
Grzegorz Liśkiewicz ◽  
Zhaohui Du ◽  
Hua Ouyang

Abstract A noise reduction method for axial flow fans using a short inlet duct is proposed. The pattern of noise reduction imposed by the short inlet duct on the axial flow cooling fan under variable working conditions was experimentally and numerically examined. A 2-cm inlet duct was found to reduce tonal noise. As the tip Mach number of the fan increased from 0.049 to 0.156, the reduction in the total average sound pressure level at 1 m from the fan increased from 0.8 dB(A) to 4.3 dB(A), and further achieved 4.8 dB(A) when a 1-cm inlet duct was used. The steady computational fluid dynamics (CFD) showed that the inlet duct has little effect on the aerodynamic performance of the fan. The results of the full passage unsteady calculation at the maximum flow rate showed that the duct has a significant influence on the suction vortexes caused by the inlet flow non-uniformity. The suction vortexes move upstream to weaken the interaction with the rotor blades, which significantly reduces the pulsating pressure on the blades. The sound pressure level (SPL) at the blade passing frequency (BPF) contributed by the thrust force was calculated to reduce by 36 dB at a 135° observer angle, reflecting the rectification effect of the duct on the non-uniform inlet flow and the improvement in characteristics of the noise source. The proper orthogonal decomposition (POD) of the static pressure field on the blades verified that the main spatial mode is more uniformly distributed due to the duct, and energy owing to the rotor-inlet interaction decreases. A speed regulation strategy for the cooling fan with short inlet duct is proposed, which provides guidance for the application of this noise reduction method.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Weixuan Jiao ◽  
Li Cheng ◽  
Di Zhang ◽  
Bowen Zhang ◽  
Yeping Su
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document