Electricity Load Prediction using Fuzzy c-means Clustering EMD based Support Vector Regression for University Building

Author(s):  
Irene Karijadi ◽  
Shuo Yan Chou ◽  
Anindhita Dewabharata ◽  
Ray Guang Cheng
Algorithms ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 37 ◽  
Author(s):  
Zhigang Hu ◽  
Hui Kang ◽  
Meiguang Zheng

A distributed data stream processing system handles real-time, changeable and sudden streaming data load. Its elastic resource allocation has become a fundamental and challenging problem with a fixed strategy that will result in waste of resources or a reduction in QoS (quality of service). Spark Streaming as an emerging system has been developed to process real time stream data analytics by using micro-batch approach. In this paper, first, we propose an improved SVR (support vector regression) based stream data load prediction scheme. Then, we design a spark-based maximum sustainable throughput of time window (MSTW) performance model to find the optimized number of virtual machines. Finally, we present a resource scaling algorithm TWRES (time window resource elasticity scaling algorithm) with MSTW constraint and streaming data load prediction. The evaluation results show that TWRES could improve resource utilization and mitigate SLA (service level agreement) violation.


2016 ◽  
pp. 1161-1183 ◽  
Author(s):  
Tuncay Ozcan ◽  
Tarik Küçükdeniz ◽  
Funda Hatice Sezgin

Electricity load forecasting is crucial for electricity generation companies, distributors and other electricity market participants. In this study, several forecasting techniques are applied to time series modeling and forecasting of the hourly loads. Seasonal grey model, support vector regression, random forests, seasonal ARIMA and linear regression are benchmarked on seven data sets. A rolling forecasting model is developed and 24 hours of the next day is predicted for the last 14 days of each data set. This day-ahead forecasting model is especially important in day-ahead market activities and plant scheduling operations. Experimental results indicate that support vector regression and seasonal grey model outperforms other approaches in terms of forecast accuracy for day-ahead load forecasting.


Sign in / Sign up

Export Citation Format

Share Document