Tropical Cyclone Geophysical Model Function for ocean surface wind retrievals from NASA Scatterometer measurements at high wind speeds

Author(s):  
J. Zec ◽  
W.L. Jones
2021 ◽  
Vol 13 (9) ◽  
pp. 1641
Author(s):  
Thomas Meissner ◽  
Lucrezia Ricciardulli ◽  
Andrew Manaster

The measurement of ocean surface wind speeds in precipitation from satellite microwave radiometers is a challenging task. Rain attenuates the signal that is emitted from the ocean surface.


2020 ◽  
Vol 12 (12) ◽  
pp. 2034 ◽  
Author(s):  
Hongsu Liu ◽  
Shuanggen Jin ◽  
Qingyun Yan

Ocean surface wind speed is an essential parameter for typhoon monitoring and forecasting. However, traditional satellite and buoy observations are difficult to monitor the typhoon due to high cost and low temporal-spatial resolution. With the development of spaceborne GNSS-R technology, the cyclone global navigation satellite system (CYGNSS) with eight satellites in low-earth orbit provides an opportunity to measure the ocean surface wind speed of typhoons. Though observations are made at the extremely efficient spatial and temporal resolution, its accuracy and reliability are unclear in an actual super typhoon case. In this study, the wind speed variations over the life cycle of the 2018 Typhoon Mangkhut from CYGNSS observations were evaluated and compared with European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-5 (ERA-5). The results show that the overall root-mean-square error (RMSE) of CYGNSS versus ECMWF was 4.12 m/s, the mean error was 1.36 m/s, and the correlation coefficient was 0.96. For wind speeds lower and greater than 15 m/s, the RMSE of CYGNSS versus ECMWF were 1.02 and 4.36 m/s, the mean errors were 0.05 and 1.61 m/s, the correlation coefficients were 0.91 and 0.90, and the average relative errors were 9.8% and 11.6%, respectively. When the typhoon reached a strong typhoon or super typhoon, the RMSE of CYGNSS with respect to ERA-5 from ECMWF was 5.07 m/s; the mean error was 3.57 m/s; the correlation coefficient was 0.52 and the average relative error was 11.0%. The CYGNSS estimation had higher precision for wind speeds below 15 m/s, but degraded when the wind speed was above 15 m/s.


Radio Science ◽  
2013 ◽  
Vol 48 (4) ◽  
pp. 371-387 ◽  
Author(s):  
Stephen J. Katzberg ◽  
Jason Dunion ◽  
George G. Ganoe

2015 ◽  
Vol 120 (2) ◽  
pp. 893-909 ◽  
Author(s):  
Paul A. Hwang ◽  
Ad Stoffelen ◽  
Gerd-Jan van Zadelhoff ◽  
William Perrie ◽  
Biao Zhang ◽  
...  

2020 ◽  
Author(s):  
Bachir Annane ◽  
Mark Leidner ◽  
Ross Hoffman ◽  
Feixiong Huang ◽  
James Garrisson

<div> <div><em>For the analysis and forecasting of tropical cyclones, the main benefits of data from the CYGNSS constellation of satellites are the increased revisit frequency compared with polar-orbiting satellites and the ability to provide ocean surface wind observations through convective precipitation. Consequently, CYGNSS delivers an improved capability to observe the structure and evolution of ocean surface winds in and around tropical cyclones. This study quantifies the impact of assimilating CYGNSS delay-Doppler maps, CYGNSS retrieved wind speeds and derived CYGNSS wind vectors on 6-hourly analyses and 5-day forecasts of developing tropical cyclones, using the 2019 version of NOAA's operational Hurricane Weather Research and Forecasting (HWRF) model.</em></div> </div>


2017 ◽  
Vol 98 (11) ◽  
pp. 2367-2385 ◽  
Author(s):  
N. Reul ◽  
B. Chapron ◽  
E. Zabolotskikh ◽  
C. Donlon ◽  
A. Mouche ◽  
...  

Abstract Wind radii estimates in tropical cyclones (TCs) are crucial to helping determine the TC wind structure for the production of effective warnings and to constrain initial conditions for a number of applications. In that context, we report on the capabilities of a new generation of satellite microwave radiometers operating at L-band frequency (∼1.4 GHz) and dual C band (∼6.9 and 7.3 GHz). These radiometers provide wide-swath (>1,000 km) coverage at a spatial resolution of ∼40 km and revisit of ∼3 days. The L-band measurements are almost unaffected by rain and atmospheric effects, while dual C-band data offer an efficient way to significantly minimize these impacts. During storm conditions, increasing foam coverage and thickness at the ocean surface sufficiently modify the surface emissivity at these frequencies and, in turn, the brightness temperature (Tb) measurements. Based on aircraft measurements, new geophysical model functions have been derived to infer reliable ocean surface wind speeds from measured Tb variations. Data from these sensors collected over 2010–15 are shown to provide reliable estimates of the gale-force (34 kt), damaging (50 kt), and destructive winds (64 kt) within the best track wind radii uncertainty. Combined, and further associated with other available observations, these measurements can now provide regular quantitative and complementary surface wind information of interest for operational TC forecasting operations.


2019 ◽  
Vol 46 (5) ◽  
pp. 2984-2992 ◽  
Author(s):  
Zhiqiang Cui ◽  
Zhaoxia Pu ◽  
Vijay Tallapragada ◽  
Robert Atlas ◽  
Christopher S. Ruf

Sign in / Sign up

Export Citation Format

Share Document