wind retrievals
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Michael I. Biggerstaff ◽  
A. Addison Alford ◽  
Gordon D. Carrie ◽  
Jeffrey A. Stevenson

Author(s):  
Mohammad Al-Khaldi ◽  
Joel T. Johnson ◽  
Stephen J. Katzberg ◽  
Younghun Kang ◽  
Ethan J. Kubatko ◽  
...  

Author(s):  
Michael P. Rennie ◽  
Lars Isaksen ◽  
Fabian Weiler ◽  
Jos Kloe ◽  
Thomas Kanitz ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 2902
Author(s):  
Yuan Gao ◽  
Jie Zhang ◽  
Jian Sun ◽  
Changlong Guan

The spaceborne synthetic aperture radar (SAR) is an effective tool to observe tropical cyclone (TC) wind fields at very high spatial resolutions. TC wind speeds can be retrieved from cross-polarization signals without wind direction inputs. This paper proposed methodologies to retrieve TC intensity parameters; for example, surface maximum wind speed, TC fullness (TCF) and central surface pressure from the European Space Agency Sentinel-1 Extra Wide swath mode cross-polarization data. First, the MS1A geophysical model function was modified from 6 to 69 m/s, based on three TC samples’ SAR images and the collocated National Oceanic and Atmospheric Administration stepped frequency microwave radiometer wind speed measurements. Second, we retrieved the wind fields and maximum wind speeds of 42 TC samples up to category 5 acquired in the last five years, using the modified MS1A model. Third, the TCF values and central surface pressures were calculated from the 1-km wind retrievals, according to the radial curve fitting of wind speeds and two hurricane wind-pressure models. Three intensity parameters were found to be dependent upon each other. Compared with the best-track data, the averaged bias, correlation coefficient (Cor) and root mean-square error (RMSE) of the SAR-retrieved maximum wind speeds were –3.91 m/s, 0.88 and 7.99 m/s respectively, showing a better result than the retrievals before modification. For central pressure, the averaged bias, Cor and RMSE were 1.17 mb, 0.77 and 21.29 mb and respectively, indicating the accuracy of the proposed methodology for pressure retrieval. Finally, a new symmetric TC wind field model was developed with the fitting function of the TCF values and maximum wind speeds, radial wind curve and the Rankine Vortex model. By this model, TC wind field can be simulated just using the maximum wind speed and the radius of maximum wind speed. Compared with wind retrievals, averaged absolute bias and averaged RMSE of all samples’ wind fields simulated by the new model were smaller than those of the Rankine Vortex model.


2021 ◽  
Vol 35 (3) ◽  
pp. 478-489
Author(s):  
Boheng Duan ◽  
Weimin Zhang ◽  
Xiaofeng Yang ◽  
Mengbin Zhu

2021 ◽  
Vol 14 (5) ◽  
pp. 3523-3539
Author(s):  
Ting-Yu Cha ◽  
Michael M. Bell

Abstract. Hurricane Matthew (2016) was observed by the ground-based polarimetric Next Generation Weather Radar (NEXRAD) in Miami (KAMX) and the National Oceanic and Atmospheric Administration WP-3D (NOAA P-3) airborne tail Doppler radar near the coast of the southeastern United States for several hours, providing a novel opportunity to evaluate and compare single- and multiple-Doppler wind retrieval techniques for tropical cyclone flows. The generalized velocity track display (GVTD) technique can retrieve a subset of the wind field from a single ground-based Doppler radar under the assumption of nearly axisymmetric rotational wind, but it has been shown to have errors from the aliasing of unresolved wind components. An improved technique that mitigates errors due to storm motion is derived in this study, although some spatial aliasing remains due to limited information content from the single-Doppler measurements. A spline-based variational wind retrieval technique called SAMURAI can retrieve the full three-dimensional wind field from airborne radar fore–aft pseudo-dual-Doppler scanning, but it has been shown to have errors due to temporal aliasing from the nonsimultaneous Doppler measurements. A comparison between the two techniques shows that the axisymmetric tangential winds are generally comparable between the two techniques, and the improved GVTD technique improves the accuracy of the retrieval. Fourier decomposition of asymmetric kinematic and convective structure shows more discrepancies due to spatial and temporal aliasing in the retrievals. The strengths and weaknesses of each technique for studying tropical cyclone structure are discussed and suggest that complementary information can be retrieved from both single- and dual-Doppler retrievals. Future improvements to the asymmetric flow assumptions in single-Doppler analysis and steady-state assumptions in pseudo-dual-Doppler analysis are required to reconcile differences in retrieved tropical cyclone structure.


2021 ◽  
Vol 13 (10) ◽  
pp. 1926
Author(s):  
Haijun Ye ◽  
Junmin Li ◽  
Bo Li ◽  
Junliang Liu ◽  
Danling Tang ◽  
...  

The China-France Oceanography SATellite (CFOSAT), launched on 29 October 2018, is a joint mission developed by China and France. To evaluate the CFOSAT wind product, L2B swath data with a spatial resolution of 25 × 25 km were compared with in situ measurements between December 2018 and December 2020. The in situ measurements were collected from 217 buoys. All buoy winds were adjusted to 10 m height using a simple logarithmic correction method. The temporal and spatial separations between the CFOSAT and in situ measurements were restricted to less than 30 min and 0.25°. The results indicate that the CFOSAT wind retrievals agree well with the buoy measurements. The root mean square errors (RMSEs) of wind vectors were 1.39 m s−1 and 34.32° and negligible biases were found. In the near shore under rain-free conditions, the RMSEs were enhanced to 1.42 m s−1 and 33.43°. Similarly, the RMSEs were reduced to 1.16 m s−1 and 30.41° offshore after the rain effect was removed. After winds less than 4 m s−1 were removed, the RMSE of wind directions was reduced to 19.69°. The effects of significant wave height, air-sea temperature difference, sea surface temperature, atmospheric pressure and ocean surface current on the wind residuals were assessed. The performance of wind retrievals under the passage of tropical cyclones was evaluated. The evaluation results show that the CFOSAT wind retrievals satisfy the accuracy requirements of scientific research, although some improvements are needed to enhance the performance.


2021 ◽  
Vol 3 ◽  
Author(s):  
Luca Schweri ◽  
Sebastien Foucher ◽  
Jingwei Tang ◽  
Vinicius C. Azevedo ◽  
Tobias Günther ◽  
...  

An accurate assessment of physical transport requires high-resolution and high-quality velocity information. In satellite-based wind retrievals, the accuracy is impaired due to noise while the maximal observable resolution is bounded by the sensors. The reconstruction of a continuous velocity field is important to assess transport characteristics and it is very challenging. A major difficulty is ambiguity, since the lack of visible clouds results in missing information and multiple velocity fields will explain the same sparse observations. It is, therefore, necessary to regularize the reconstruction, which would typically be done by hand-crafting priors on the smoothness of the signal or on the divergence of the resulting flow. However, the regularizers can smooth the solution excessively and will not guarantee that possible solutions are truly physically realizable. In this paper, we demonstrate that data recovery can be learned by a neural network from numerical simulations of physically realizable fluid flows, which can be seen as a data-driven regularization. We show that the learning-based reconstruction is especially powerful in handling large areas of missing or occluded data, outperforming traditional models for data recovery. We quantitatively evaluate our method on numerically-simulated flows, and additionally apply it to a Guadalupe Island case study—a real-world flow data set retrieved from satellite imagery of stratocumulus clouds.


2021 ◽  
Vol 13 (7) ◽  
pp. 1334
Author(s):  
Georgios Priftis ◽  
Timothy J. Lang ◽  
Piyush Garg ◽  
Stephen W. Nesbitt ◽  
Richard D. Lindsley ◽  
...  

Outflow boundaries induced by cold-pools are a key characteristic of convective systems related to microphysical and kinematic processes during the mature stage of their lifecycle. Over the ocean, such kinematic processes are associated with low-level wind modulations that are captured by scatterometers. This study investigates the ability of the Advanced Scatterometer (ASCAT) wind retrievals to detect the outflow boundary associated with an oceanic mesoscale convective system (MCS). Leveraging a new technique to identify cold pools that is based on features that enclose elevated magnitude of the gradient of the wind, termed as `Gradient Feature’ (GF), wind retrievals at 50-, 25- and 7-km spatial resolution were utilized to explore how the characteristics of the outflow boundary vary with resolution. Ground-based radar retrievals were also implemented to assess and correct, when possible, the performance of the ASCAT retrievals. The magnitude of the gradient of the wind for the coarser resolution was an order of magnitude smaller (10−4 s−1) than the finer ones (10−3 s−1). An increase in the magnitude of the gradient wind field associated with the outflow boundary was captured by all resolutions and a respective feature was identified by the GF method. The location of the features relative to the distance from the front edge of the MCS decreased with resolution, indicating the importance of the high resolution ASCAT product to capture their extent, as well as additional smaller scale features. The effect of the background wind field on the selection of the final wind field during the ambiguity removal process for the high-resolution product is also discussed.


2021 ◽  
Author(s):  
Michael P. Rennie ◽  
Lars Isaksen

<p>The latest results on the assessment of the impact of Aeolus Level-2B horizontal line-of-sight wind retrievals in global Numerical Weather Prediction at ECMWF will be presented.  Aeolus has been operationally assimilated at ECMWF since 9 January 2020.<br>Random and systematic error estimates were derived from observation minus background departure statistics.  The HLOS wind random error standard deviation is estimated to vary over the range 4.0-7.0 m/s for the Rayleigh-clear and 2.8-3.6 m/s for the Mie-cloudy; depending on atmospheric signal levels which in turn depends on instrument performance, atmospheric backscatter properties and the processing algorithms.<br>In Observing System Experiments (OSEs) Aeolus provides statistically significant improvement in short-range forecasts as verified by observations sensitive to temperature, wind and humidity.  Longer forecast range verification shows positive impact that is strongest at the 2-3 day forecast range; ~2% improvement in root mean square error for vector wind and temperature in the tropical upper troposphere and lower stratosphere and polar troposphere.  Positive impact up to 9 days is found in the tropical lower stratosphere.  Both Rayleigh-clear and Mie-cloudy winds provide positive impact, but the Rayleigh accounts for most tropical impact. The Forecast Sensitivity Observation Impact (FSOI) metric is available since Aeolus was operationally assimilated, which confirms Aeolus is a useful contribution to the global observing system; with the Rayleigh-clear and Mie-cloudy winds providing similar overall short-range impact in 2020.  If the OSEs are ready in time, we will present the impact of the first reprocessed Aeolus data for the July-December 2019 period.</p>


Sign in / Sign up

Export Citation Format

Share Document