Phenological stages-based NDVI in spring wheat yield estimation for the Canadian prairies

Author(s):  
V. Kumar ◽  
C.F. Shaykewich ◽  
C.E. Haque
2000 ◽  
Vol 80 (1) ◽  
pp. 123-127 ◽  
Author(s):  
R. M. DePauw ◽  
J. M. Clarke ◽  
R. E. Knox ◽  
M. R. Fernandez ◽  
T. N. McCaig ◽  
...  

AC Abbey, hard red spring wheat (Triticum aestivum L.), is adapted to the Canadian prairies. It is significantly shorter than any of the check cultivars and has solid stems. AC Abbey expressed higher grain yield, earlier maturity, and heavier kernels than AC Eatonia, the solidstem check cultivar. It is resistant to the wheat stem sawfly (Cephus cinctus Nort.) and to prevalent races of common bunt and has moderate resistance to leaf rust and stem rust. AC Abbey is eligible for grades of Canada Western Red Spring wheat. Key words: Triticum aestivum L., red spring wheat, yield, wheat stem sawfly, plant height, maturity


2013 ◽  
Vol 149 ◽  
pp. 329-337 ◽  
Author(s):  
Yong He ◽  
Yongsheng Wei ◽  
Ron DePauw ◽  
Budong Qian ◽  
Reynald Lemke ◽  
...  

1998 ◽  
Vol 78 (1) ◽  
pp. 171-179 ◽  
Author(s):  
R. L. Raddatz ◽  
C. F. Shaykewich

How do warm summers (June–July–August) influence the actual evapotranspiration totals from cropped land sown to spring wheat on the eastern Canadian Prairies? The eastern Prairies is a semi-arid region where over 60% of the land is cultivated. Over a third of the cropped land is usually sown to spring wheat. A comparison of mean summer temperatures and modelled evapotranspiration, for the years 1988 to 1996, demonstrated that with the current environmental conditions and farming practices, warm summers have lower actual evapotranspiration totals from spring wheat than cool summers. The average daily actual evapotranspiration rate is generally higher in years with higher mean summer temperatures; however, the crop growth-period is shorter. The net effect is lower total actual evapotranspiration from spring wheat. This suggests that climate warming on the eastern Canadian Prairies, if the current trend continues and all other factors remain equal, will reduce, on average, the total actual evapotranspiration from spring wheat. A reduction in the growth-period actual evapotranspiration from lands sown to spring wheat will likely decrease the total actual evapotranspiration for the entire warm season as growth-period evapotranspiration currently makes up about three-quarters of the seasonal total. However, the magnitude and timing of the reduction is far from certain. The consequence for agriculture may be a reduction in the average spring wheat yield because yield is positively correlated with the actual evapotranspiration total from the crop. Key words: Modelling, crop growth-period, yield, climate warming


1999 ◽  
Vol 79 (3) ◽  
pp. 375-378 ◽  
Author(s):  
R. M. DePauw ◽  
J. M. Clarke ◽  
R. E. Knox ◽  
M. R. Fernandez ◽  
T. N. McCaig ◽  
...  

AC Intrepid, a hard red spring wheat (Triticum aestivum L.), is adapted to the Canadian prairies. It expressed high grain yield, early maturity, and heavy kernels. It has resistance to prevalent races of leaf rust, stem rust, and common bunt. AC Intrepid is eligible for grades of Canada Western Red Spring wheat. Key words: Triticum aestivum L., red spring wheat, yield, maturity, disease resistance, seed size


2021 ◽  
Vol 244 ◽  
pp. 106591
Author(s):  
Qi Jing ◽  
Brian McConkey ◽  
Budong Qian ◽  
Ward Smith ◽  
Brian Grant ◽  
...  

1998 ◽  
Vol 78 (3) ◽  
pp. 459-462 ◽  
Author(s):  
R. M. DePauw ◽  
J. B. Thomas ◽  
R. E. Knox ◽  
J. M. Clarke ◽  
M. R. Fernandez ◽  
...  

AC Cadillac, a hard red spring wheat (Triticum aestivum L.), is adapted to the Canadian Prairies. It combines high grain yield with high grain protein concentration, heavy kernel and volume weights. It has improved resistance to leaf spots compared with the check cultivars, and resistance to prevalent races of leaf rust, stem rust, loose smut, and common bunt. AC Cadillac is eligible for grades of Canada Western Red Spring wheat. Key words: Triticum aestivum L., red spring wheat, yield, protein, disease resistance, volume weight


2019 ◽  
Vol 11 (21) ◽  
pp. 2568 ◽  
Author(s):  
Battsetseg Tuvdendorj ◽  
Bingfang Wu ◽  
Hongwei Zeng ◽  
Gantsetseg Batdelger ◽  
Lkhagvadorj Nanzad

In Mongolia, the monitoring and estimation of spring wheat yield at the regional and national levels are key issues for the agricultural policy and food management as well as for the economy and society as a whole. The remote sensing data and technique have been widely used for the estimation of crop yield and production in the world. For the current research, nine remote sensing indices were tested that include normalized difference drought index (NDDI), normalized difference water index (NDWI), vegetation condition index (VCI), temperature condition index (TCI), vegetation health index (VHI), normalized multi-band drought index (NMDI), visible and shortwave infrared drought index (VSDI), and vegetation supply water index (VSWI). These nine indices derived from MODIS/Terra satellite have so far not been used for crop yield prediction in Mongolia. The primary objective of this study was to determine the best remote sensing indices in order to develop an estimation model for spring wheat yield using correlation and regression method. The spring wheat yield data from the ground measurements of eight meteorological stations in Darkhan and Selenge provinces from 2000 to 2017 have been used. The data were collected during the period of the growing season (June–August). Based on the analysis, we constructed six models for spring wheat yield estimation. The results showed that the range of the root-mean-square error (RMSE) values of estimated spring wheat yield was between 4.1 (100 kg ha−1) to 4.8 (100 kg ha−1), respectively. The range of the mean absolute error (MAE) values was between 3.3 to 3.8 and the index of agreement (d) values was between 0.74 to 0.84, respectively. The conclusion was that the best model would be (R2 = 0.55) based on NDWI, VSDI, and NDVI out of the nine indices and could serve as the most effective predictor and reliable remote sensing indices for monitoring the spring wheat yield in the northern part of Mongolia. Our results showed that the best timing of yield prediction for spring wheat was around the end of June and the beginning of July, which is the flowering stage of spring wheat in this study area. This means an accurate yield prediction for spring wheat can be achieved two months before the harvest time using the regression model.


Sign in / Sign up

Export Citation Format

Share Document