Land Surface Temperature Estimation from Passive Satellite Images using Support Vector Machines

Author(s):  
S. Serpico ◽  
M. De Martino ◽  
G. Moser ◽  
M. Zortea
2020 ◽  
Vol 12 (19) ◽  
pp. 3143
Author(s):  
Maosi Chen ◽  
Zhibin Sun ◽  
Benjamin H. Newell ◽  
Chelsea A. Corr ◽  
Wei Gao

Missing pixels is a common issue in satellite images. Taking Landsat 8 Analysis Ready Data (ARD) Land Surface Temperature (LST) image as an example, the Source-Augmented Partial Convolution v2 model (SAPC2) is developed to reconstruct missing pixels in the target LST image with the assistance of a collocated complete source image. SAPC2 utilizes the partial convolution enabled U-Net as its framework and accommodates the source into the framework by: (1) performing the shared partial convolution on both the source and the target in encoders; and (2) merging the source and the target by using the partial merge layer to create complete skip connection images for the corresponding decoders. The optimized SAPC2 shows superior performance to four baseline models (i.e., SAPC1, SAPC2-OPC, SAPC2-SC, and STS-CNN) in terms of nine validation metrics. For example, the masked MSE of SAPC2 is 7%, 20%, 44%, and 59% lower than that of the four baseline models. On the six scrutinized cases, the repaired target images generated by SAPC2 have the fewest artifacts near the mask boundary and the best recovery of color scales and fine textures compared with the four baseline models.


2020 ◽  
Vol 12 (7) ◽  
pp. 1191 ◽  
Author(s):  
Md. Mustafizur Rahman ◽  
Ram Avtar ◽  
Ali P. Yunus ◽  
Jie Dou ◽  
Prakhar Misra ◽  
...  

Spatial urban growth and its impact on land surface temperature (LST) is a high priority environmental issue for urban policy. Although the impact of horizontal spatial growth of cities on LST is well studied, the impact of the vertical spatial distribution of buildings on LST is under-investigated. This is particularly true for cities in sub-tropical developing countries. In this study, TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-XDEM), Advanced Spaceborne Thermal Emission and Reflection (ASTER)-Global Digital Elevation Model (GDEM), and ALOS World 3D-30m (AW3D30) based Digital Surface Model (DSM) data were used to investigate the vertical growth of the Dhaka Metropolitan Area (DMA) in Bangladesh. Thermal Infrared (TIR) data (10.6-11.2µm) of Landsat-8 were used to investigate the seasonal variations in LST. Thereafter, the impact of horizontal and vertical spatial growth on LST was studied. The result showed that: (a) TanDEM-X DSM derived building height had a higher accuracy as compared to other existing DSM that reveals mean building height of the Dhaka city is approximately 10 m, (b) built-up areas were estimated to cover approximately 94%, 88%, and 44% in Dhaka South City Corporation (DSCC), Dhaka North City Corporation (DNCC), and Fringe areas, respectively, of DMA using a Support Vector Machine (SVM) classification method, (c) the built-up showed a strong relationship with LST (Kendall tau coefficient of 0.625 in summer and 0.483 in winter) in comparison to vertical growth (Kendall tau coefficient of 0.156 in the summer and 0.059 in the winter), and (d) the ‘low height-high density’ areas showed high LST in both seasons. This study suggests that vertical development is better than horizontal development for providing enough open spaces, green spaces, and preserving natural features. This study provides city planners with a better understating of sustainable urban planning and can promote the formulation of action plans for appropriate urban development policies.


2019 ◽  
Vol 40 (14) ◽  
pp. 5544-5562 ◽  
Author(s):  
Thanh Noi Phan ◽  
Martin Kappas ◽  
Khac Thoi Nguyen ◽  
Trong Phuong Tran ◽  
Quoc Vinh Tran ◽  
...  

2017 ◽  
Vol 9 (12) ◽  
pp. 1208 ◽  
Author(s):  
David Parastatidis ◽  
Zina Mitraka ◽  
Nektrarios Chrysoulakis ◽  
Michael Abrams

Sign in / Sign up

Export Citation Format

Share Document