Analysis of urban heat island (UHI) in the Beijing metropolitan area by time-series MODIS data

Author(s):  
Ji Zhou ◽  
Jing Li ◽  
Jianwei Yue
2019 ◽  
Vol 17 (4) ◽  
pp. 87-102 ◽  
Author(s):  
Warisara Sanecharoen ◽  
◽  
Kanchana Nakhapakorn ◽  
Aeumphorn Mutchimwong ◽  
Supet Jirakajohnkool ◽  
...  

Author(s):  
Yukun WANG ◽  
Akiko NISHIMURA ◽  
Yuji SUGIHARA ◽  
Guoyun ZHOU ◽  
Yukiko HISADA ◽  
...  

2013 ◽  
Vol 52 (11) ◽  
pp. 2418-2433 ◽  
Author(s):  
A. M. E. Winguth ◽  
B. Kelp

AbstractHourly surface temperature differences between Dallas–Fort Worth, Texas, metropolitan and rural sites have been used to calculate the urban heat island from 2001 to 2011. The heat island peaked after sunset and was particularly strong during the drought and heat wave in July 2011, reaching a single-day instantaneous maximum value of 5.4°C and a monthly mean maximum of 3.4°C, as compared with the 2001–11 July average of 2.4°C. This severe drought caused faster warming of rural locations relative to the metropolitan area in the morning as a result of lower soil moisture content, which led to an average negative heat island in July 2011 of −2.3°C at 1100 central standard time. The ground-based assessment of canopy air temperature at screening level has been supported by a remotely sensed surface estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite, highlighting a dual-peak maximum heat island in the major city centers of Dallas and Fort Worth. Both ground-based and remotely sensed spatial analyses of the maximum heat island indicate a northwest shift, the result of southeast winds in July 2011 of ~2 m s−1 on average. There was an overall positive trend in the urban heat island of 0.14°C decade−1 in the Dallas–Fort Worth metropolitan area from 2001 to 2011, due to rapid urbanization. Superimposed on this trend are significant interannual and decadal variations that influence the urban climate.


2021 ◽  
Author(s):  
Emily Elhacham ◽  
Pinhas Alpert

<p>Over a billion people currently live in coastal areas, and coastal urbanization is rapidly growing worldwide. Here, we explore the impact of an extreme and rapid coastal urbanization on near-surface climatic variables, based on MODIS data, Landsat and some in-situ observations. We study Dubai, one of the fastest growing cities in the world over the last two decades. Dubai's urbanization centers along its coastline – in land, massive skyscrapers and infrastructure have been built, while in sea, just nearby, unique artificial islands have been constructed.</p><p>Studying the coastline during the years of intense urbanization (2001-2014), we show that the coastline exhibits surface urban heat island characteristics, where the urban center experiences higher temperatures, by as much as 2.0°C and more, compared to the adjacent less urbanized zones. During development, the coastal surface urban heat island has nearly doubled its size, expanding towards the newly developed areas. This newly developed zone also exhibited the largest temperature trend along the coast, exceeding 0.1°C/year on average.</p><p>Overall, we found that over land, temperature increases go along with albedo decreases, while in sea, surface temperature decreases and albedo increases were observed particularly over the artificial islands. These trends in land and sea temperatures affect the land-sea temperature gradient which influences the breeze intensity. The above findings, along with the increasing relative humidity shown, directly affect the local population and ecosystem and add additional burden to this area, which is already considered as one of the warmest in the world and a climate change 'hot spot'.</p><p> </p><p><strong>References:</strong></p><p>E. Elhacham and P. Alpert, "Impact of coastline-intensive anthropogenic activities on the atmosphere from moderate resolution imaging spectroradiometer (MODIS) data in Dubai (2001–2014)", <em>Earth’s Future</em>, 4, 2016. https://doi.org/10.1002/2015EF000325</p><p>E. Elhacham and P. Alpert, "Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai", submitted.</p>


Sign in / Sign up

Export Citation Format

Share Document