A deep learning approach for unsupervised domain adaptation in multitemporal remote sensing images

Author(s):  
Essam Othman ◽  
Yakoub Bazi ◽  
Haikel AlHichri ◽  
Naif Alajlan
Author(s):  
Akey Sungheetha ◽  
Rajesh Sharma R

Over the last decade, remote sensing technology has advanced dramatically, resulting in significant improvements on image quality, data volume, and application usage. These images have essential applications since they can help with quick and easy interpretation. Many standard detection algorithms fail to accurately categorize a scene from a remote sensing image recorded from the earth. A method that uses bilinear convolution neural networks to produce a lessweighted set of models those results in better visual recognition in remote sensing images using fine-grained techniques. This proposed hybrid method is utilized to extract scene feature information in two times from remote sensing images for improved recognition. In layman's terms, these features are defined as raw, and only have a single defined frame, so they will allow basic recognition from remote sensing images. This research work has proposed a double feature extraction hybrid deep learning approach to classify remotely sensed image scenes based on feature abstraction techniques. Also, the proposed algorithm is applied to feature values in order to convert them to feature vectors that have pure black and white values after many product operations. The next stage is pooling and normalization, which occurs after the CNN feature extraction process has changed. This research work has developed a novel hybrid framework method that has a better level of accuracy and recognition rate than any prior model.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hongyu Wang ◽  
Hong Gu ◽  
Pan Qin ◽  
Jia Wang

Deep learning has achieved considerable success in medical image segmentation. However, applying deep learning in clinical environments often involves two problems: (1) scarcity of annotated data as data annotation is time-consuming and (2) varying attributes of different datasets due to domain shift. To address these problems, we propose an improved generative adversarial network (GAN) segmentation model, called U-shaped GAN, for limited-annotated chest radiograph datasets. The semi-supervised learning approach and unsupervised domain adaptation (UDA) approach are modeled into a unified framework for effective segmentation. We improve GAN by replacing the traditional discriminator with a U-shaped net, which predicts each pixel a label. The proposed U-shaped net is designed with high resolution radiographs (1,024 × 1,024) for effective segmentation while taking computational burden into account. The pointwise convolution is applied to U-shaped GAN for dimensionality reduction, which decreases the number of feature maps while retaining their salient features. Moreover, we design the U-shaped net with a pretrained ResNet-50 as an encoder to reduce the computational burden of training the encoder from scratch. A semi-supervised learning approach is proposed learning from limited annotated data while exploiting additional unannotated data with a pixel-level loss. U-shaped GAN is extended to UDA by taking the source and target domain data as the annotated data and the unannotated data in the semi-supervised learning approach, respectively. Compared to the previous models dealing with the aforementioned problems separately, U-shaped GAN is compatible with varying data distributions of multiple medical centers, with efficient training and optimizing performance. U-shaped GAN can be generalized to chest radiograph segmentation for clinical deployment. We evaluate U-shaped GAN with two chest radiograph datasets. U-shaped GAN is shown to significantly outperform the state-of-the-art models.


2020 ◽  
Vol 12 (15) ◽  
pp. 2501 ◽  
Author(s):  
Minh-Tan Pham ◽  
Luc Courtrai ◽  
Chloé Friguet ◽  
Sébastien Lefèvre ◽  
Alexandre Baussard

Object detection from aerial and satellite remote sensing images has been an active research topic over the past decade. Thanks to the increase in computational resources and data availability, deep learning-based object detection methods have achieved numerous successes in computer vision, and more recently in remote sensing. However, the ability of current detectors to deal with (very) small objects still remains limited. In particular, the fast detection of small objects from a large observed scene is still an open question. In this work, we address this challenge and introduce an enhanced one-stage deep learning-based detection model, called You Only Look Once (YOLO)-fine, which is based on the structure of YOLOv3. Our detector is designed to be capable of detecting small objects with high accuracy and high speed, allowing further real-time applications within operational contexts. We also investigate its robustness to the appearance of new backgrounds in the validation set, thus tackling the issue of domain adaptation that is critical in remote sensing. Experimental studies that were conducted on both aerial and satellite benchmark datasets show some significant improvement of YOLO-fine as compared to other state-of-the art object detectors.


Sign in / Sign up

Export Citation Format

Share Document